The endothelin-B receptor (ETR) mediates vasodilation in young women, an effect that is absent in postmenopausal women. We have previously demonstrated that ETR-mediated vasodilation is regulated by estradiol (E) in young women; however, the impact of E on ETR function in postmenopausal women remains unknown. Accordingly, the objective of this study was to test the hypothesis that E exposure restores ETR-mediated dilation in postmenopausal women.
View Article and Find Full Text PDFIn-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2024
Vascular dysfunction, marked by lower endothelial function and increased aortic stiffness, is a nontraditional risk factor that precedes the development of cardiovascular disease (CVD). However, the age at which these changes in vascular function occur in women and the degree to which reproductive hormones mediate these changes has not been characterized. Women free from major disease were enrolled across the adult life span (aged 18-70 yr, = 140).
View Article and Find Full Text PDFJ Appl Physiol (1985)
August 2024
The sympathetic nervous system is critical for regulating blood pressure (BP) via the arterial baroreflex and sympathetic transduction in the peripheral vasculature. These mechanisms interact, and both may be altered with aging and impacted by menopause. Although age-related decreases in sympathetic transduction have been demonstrated in women, it remains unclear whether sympathetic baroreflex sensitivity (BRS) is impaired in postmenopausal women (POST).
View Article and Find Full Text PDFObjective: Drug delivery from a drug-loaded device into an adjacent tissue is a complicated process involving drug transport through diffusion and advection, coupled with drug binding kinetics responsible for drug uptake in the tissue. This work presents a theoretical model to predict drug delivery from a device into a multilayer tissue, assuming linear reversible drug binding in the tissue layers.
Methods: The governing mass conservation equations based on diffusion, advection and drug binding in a multilayer cylindrical geometry are written, and solved using Laplace transformation.
Below-the-knee (infrapopliteal) atherosclerotic disease, which presents as chronic limb-threatening ischemia (CLTI) in nearly 50% of patients, represents a treatment challenge when it comes to the endovascular intervention arm of management. Due to reduced tissue perfusion, patients usually experience pain at rest and atrophic changes correlated to the extent of the compromised perfusion. Unfortunately, the prognosis remains unsatisfactory with 30% of patients requiring major amputation and a mortality rate of 25% within 1 year.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2023
Background And Objective: In-stent restenosis (ISR) following percutaneous coronary intervention with drug-eluting stent (DES) implantation remains an unresolved issue, with ISR rates up to 10%. The use of antiproliferative drugs on DESs has significantly reduced ISR. However, a complete knowledge of the mechanobiological processes underlying ISR is still lacking.
View Article and Find Full Text PDFFunctionally graded materials (FGMs), possessing properties that vary smoothly from one region to another, have been receiving increasing attention in recent years, particularly in the aerospace, automotive and biomedical sectors. However, they have yet to reach their full potential. In this paper, we explore the potential of FGMs in the context of drug delivery, where the unique material characteristics offer the potential of fine-tuning drug-release for the desired application.
View Article and Find Full Text PDFDissolution of drug from its solid form to a dissolved form is an important consideration in the design and optimization of drug delivery devices, particularly owing to the abundance of emerging compounds that are extremely poorly soluble. When the solid dosage form is encapsulated, for example by the porous walls of an implant, the impact of the encapsulant drug transport properties is a further confounding issue. In such a case, dissolution and diffusion work in tandem to control the release of drug.
View Article and Find Full Text PDFStructural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available.
View Article and Find Full Text PDFObjective: There is increasing interest in simultaneous endovascular delivery of more than one drug from a drug-loaded stent into a diseased artery. There may be an opportunity to obtain a therapeutically desirable uptake profile of the two drugs over time by appropriate design of the initial drug distribution in the stent. Due to the non-linear, coupled nature of diffusion and reversible specific/non-specific binding of both drugs as well as competition between the drugs for a fixed binding site density, a comprehensive numerical investigation of this problem is critically needed.
View Article and Find Full Text PDFA traditional method of in vitro cell culture involves a monolayer of cells at the base of a petri dish filled with culture medium. While the primary role of the culture medium is to supply nutrients to the cells, drug or other solutes may be added, depending on the purpose of the experiment. Metabolism by cells of oxygen, nutrients and drug is typically governed by Michaelis-Menten (M-M) kinetics.
View Article and Find Full Text PDFObjective: Customization of the rate of drug delivered based on individual patient requirements is of paramount importance in the design of drug delivery devices. Advances in manufacturing may enable multilayer drug delivery devices with different initial drug distributions in each layer. However, a robust mathematical understanding of how to optimize such capabilities is critically needed.
View Article and Find Full Text PDFSince the introduction of percutaneous coronary intervention (PCI) for the treatment of obstructive coronary artery disease (CAD), patient outcomes have progressively improved. Drug eluting stents (DES) that employ anti-proliferative drugs to limit excess tissue growth following stent deployment have proved revolutionary. However, restenosis and a need for repeat revascularisation still occurs after DES use.
View Article and Find Full Text PDFThe most common treatment for obstructive coronary artery disease (CAD) is the implantation of a permanent drug-eluting stent (DES). Not only has this permanency been associated with delayed healing of the artery, but it also poses challenges when treating subsequent re-narrowing due to in-stent restenosis (ISR). Drug-coated balloons (DCBs) provide a potential solution to each of these issues.
View Article and Find Full Text PDFThe mechanisms for the benefits of Angiotensin Receptor Neprilysin Inhibition (ARNi) in heart failure patients with reduced ejection fraction (HFrEF) are likely beyond blood pressure reduction. Measures of vascular function such as arterial stiffness and endothelial function are strong prognostic markers of cardiovascular outcomes in HFrEF, yet the impact of ARNi on vascular health remains to be explored. We hypothesized that arterial stiffness and endothelial function would improve after 12 weeks of ARNi in HFrEF.
View Article and Find Full Text PDFDrug-filled implants (DFIs) have emerged as an innovative approach to control the delivery of drugs. These devices contain the drug within the structure of the implant itself and avoid the need to include additional drug carrier materials such as a polymers, which are often associated with inflammation and delayed healing/tissue regeneration at the implant site. One common feature of in vitro experiments to generate drug release profiles is stirring or agitation of the release medium.
View Article and Find Full Text PDFControlled release of a drug contained in a spherical polymer capsule is of significant interest in many fields of medicine. There is growing interest in tailoring the erosion properties of the drug to help control and optimize the drug release process. Theoretical understanding of the nature of drug release from a bioerodible capsule is, therefore, important for designing effective drug delivery systems.
View Article and Find Full Text PDFIntroduction: Postmenopausal women (PMW) display exaggerated increases in blood pressure (BP) during exercise, yet the mechanism(s) involved remain unclear. Moreover, research on the impact of menopausal changes in estradiol on cardiovascular control during exercise are limited. Herein, we tested the hypothesis that sympathetic responses during exercise are augmented in PMWcompared with young women (YW), and estradiol administration attenuates these responses.
View Article and Find Full Text PDFBackground/objectives: Drug-coated balloon therapy for diseased superficial femoral arteries remains controversial. Despite its clinical relevance, only a few computational studies based on simplistic two-dimensional models have been proposed to investigate this endovascular therapy to date. This work addresses the aforementioned limitation by analyzing the drug transport and kinetics occurring during drug-coated balloon deployment in a three-dimensional geometry.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2021
The endothelin-B (ET) receptor is a key regulator of vascular endothelial function in women. We have previously shown that the ET receptor mediates vasodilation in young women, an effect that is lost after menopause. However, the direct impact of changes in estradiol (E) on ET receptor function in women remains unclear.
View Article and Find Full Text PDFThe advent of drug-eluting stents (DES) has revolutionised the treatment of coronary artery disease. These devices, coated with anti-proliferative drugs, are deployed into stenosed or occluded vessels, compressing the plaque to restore natural blood flow, whilst simultaneously combating the evolution of restenotic tissue. Since the development of the first stent, extensive research has investigated how further advancements in stent technology can improve patient outcome.
View Article and Find Full Text PDFComput Biol Med
April 2021
Targeted drug delivery systems represent a promising strategy to treat localised disease with minimum impact on the surrounding tissue. In particular, polymeric nanocontainers have attracted major interest because of their structural and morphological advantages and the variety of polymers that can be used, allowing the synthesis of materials capable of responding to the biochemical alterations of the environment. While experimental methodologies can provide much insight, the generation of experimental data across a wide parameter space is usually prohibitively time consuming and/or expensive.
View Article and Find Full Text PDF