Background: The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis.
Methods: and studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity.
Phospholipase D2 (PLD2), a major isoform of the PLD family, has been reported to regulate inflammatory responses. Thus far, the relevance of PLD2 in psoriasis, an inflammatory skin disease, has not been explored. In the current study, we examined PLD2 expression in the skin of psoriasis patients and the role of PLD2 in an interleukin (IL)-23-induced mouse model of psoriasiform dermatitis.
View Article and Find Full Text PDFThe voltage-gated sodium channel Na1.7 is an attractive target for the treatment of pain based on the high level of target validation with genetic evidence linking Na1.7 to pain in humans.
View Article and Find Full Text PDFPsoriasis is a debilitating skin disease characterized by epidermal thickening, abnormal keratinocyte differentiation, and proinflammatory immune cell infiltrate into the affected skin. IL-17A plays a critical role in the etiology of psoriasis. ACT1, an intracellular adaptor protein and a putative ubiquitin E3 ligase, is essential for signal transduction downstream of the IL-17A receptor.
View Article and Find Full Text PDFFoxp3 regulatory T cells (Tregs) represent a major fraction of skin resident T cells. Although normally protective, Tregs have been shown to produce pro-inflammatory cytokines in human diseases, including psoriasis. A significant hurdle in the Treg field has been the identification, or development, of model systems to study this Treg plasticity.
View Article and Find Full Text PDFBlockade of interleukin (IL)-23 or IL-17 with biologics is clinically validated as a treatment of psoriasis. However, the clinical impact of targeting other nodes within the IL-23/IL-17 pathway, especially with small molecules, is less defined. We report on a novel small molecule inverse agonist of retinoid acid-related orphan receptor (ROR) t and its efficacy in preclinical models of psoriasis and arthritis.
View Article and Find Full Text PDFIL-36 cytokines are pro-inflammatory members of the IL-1 family that are upregulated in inflammatory disorders. Specifically, IL-36γ is highly expressed in active psoriatic lesions and can drive pro-inflammatory processes in 3D human skin equivalents supporting a role for this target in skin inflammation. Small molecule antagonists of interleukins have been historically challenging to generate.
View Article and Find Full Text PDFThe interleukin (IL)-23/IL-17 axis plays a central role in the pathogenesis of psoriasis and is elevated in lesional psoriatic skin. Different murine models have been developed to mimic this pathophysiology each carrying specific merits and limitations. In an attempt to address some of these limitations, B10.
View Article and Find Full Text PDFPsoriasis is an immune-mediated inflammatory skin disease that affects millions worldwide. Studying immune cells involved in psoriasis pathogenesis is essential to identify effective and safe therapeutics for the disease. Using human psoriasis skin, activated macrophages were observed in both lesional and non-lesional skin, but were elevated in lesional skin.
View Article and Find Full Text PDFPsoriasis vulgaris (PV) results from activation of IL-23/Th17 immune pathway and is further amplified by cytokines/chemokines from skin cells. Among skin-derived pro-inflammatory cytokines, IL-36 family members are highly upregulated in PV patients and play a critical role in general pustular psoriasis. However, there is limited data showing crosstalk between the IL-23 and IL-36 pathways in PV.
View Article and Find Full Text PDFBackground: Animal models of Psoriasis (PsO) are important for our understanding of the pathophysiology of human disease but rarely manifest all features of the disease. In order to facilitate greater understanding of the underlying biology of PsO it is key that we understand the strengths and limitations of models used.
Objective: While humanized mouse models are available for PsO they remain technically challenging, expensive, require prolonged timelines and require a continued source of human tissue.
This overview compares the activity of wide dynamic range (WDR) and nociceptive specific (NS) neurons located in the deep dorsal horn across different rat models of pathological pain and following modulation by diverse pharmacology. The data were collected by our group under the same experimental conditions over numerous studies to facilitate comparison. Spontaneous firing of WDR neurons was significantly elevated (>3.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
December 2018
Introduction: The adenine model of kidney disease typically involves dietary delivery of adenine over several weeks. This model can be variable in its disease progression and can result in significant mortality. In the current study, the amount of adenine delivered to rats was controlled by utilizing oral gavage administration over a short period in an attempt to induce robust renal pathology while addressing variability and viability of the animals.
View Article and Find Full Text PDFOsteoarthritis (OA) is a degenerative form of arthritis that can result in loss of joint function and chronic pain. The pathological pain state that develops with OA disease involves plastic changes in the peripheral and central nervous systems, however, the cellular mechanisms underlying OA are not fully understood. We characterized the medial meniscal tear (MMT) surgical model and the intra-articular injection of monosodium iodoacetate (MIA) chemical model of OA in rats.
View Article and Find Full Text PDFJ Basic Clin Physiol Pharmacol
June 2018
Background: Losartan, a blocker of the angiotensin II type I receptor, is an important part of the standard of care for diabetic nephropathy (DN). The obese ZSF-1 rats display many aspects of the clinical features of human Type II DN. The current study was designed to examine the treatment effects of losartan on obese ZSF-1 rats and to evaluate the impact of the onset of dosing on efficacy.
View Article and Find Full Text PDFTargeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury.
View Article and Find Full Text PDFTRPV3 is a nonselective cation channel activated by temperatures above 33°C and is reported to be localized in keratinocytes and nervous tissue. To investigate a role for TRPV3 in pain modulation, we conducted a series of in vivo electrophysiological studies on spinal and brain nociceptive neurons. Structurally diverse TRPV3 receptor antagonists reduced responses of spinal wide dynamic range (WDR) neurons to low-intensity mechanical stimulation in neuropathic rats, but only CNS-penetrant antagonists decreased elevated spontaneous firing.
View Article and Find Full Text PDFBackground: Obese ZSF-1 rats display many features of human type II diabetes including nephropathy (DN). The study aimed to further understand the relevance of this model to DN, for which glomerular filtration rate (GFR), renal fibrosis and several urinary/tissue biomarkers was followed over 24 weeks in ZSF-1 rats.
Methods: Intact/sham or uninephrectomized male and female ZSF-1 rats were studied.
Adenosine (ADO) is an important regulatory purine nucleoside that accumulates at sites of inflammation and tissue injury including in diseases associated with renal pathology. Endogenous levels of ADO may be increased by inhibiting the ADO-metabolizing enzyme, ADO kinase (AK). AK inhibitors have demonstrated protection in rodent models of diabetic nephropathy.
View Article and Find Full Text PDFTransient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders.
View Article and Find Full Text PDFThere is strong pharmacological, biological, and genetic evidence supporting the role of N-type calcium channels (CaV2.2) in nociception. There is also human validation data from ziconotide, the CaV2.
View Article and Find Full Text PDFBackground: The noradrenergic system contributes to pain modulation, but the roles of its specific adrenoceptors are still being defined. We have identified a novel, potent (rat EC50 = 4.3 nM) and selective α2B receptor agonist, A-1262543, to further explore this adrenoceptor subtype's contribution to pathological nociception.
View Article and Find Full Text PDFActivation of T-type Ca²⁺ channels contributes to nociceptive signaling by facilitating action potential bursting and modulation of membrane potentials during periods of neuronal hyperexcitability. The role of T-type Ca²⁺ channels in chronic pain is supported by gene knockdown studies showing that decreased Ca(v)3.2 channel expression results in the loss of low voltage-activated (LVA) currents in dorsal root ganglion (DRG) neurons and attenuation of neuropathic pain in the chronic constriction injury (CCI) model.
View Article and Find Full Text PDFUnlabelled: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 μM).
View Article and Find Full Text PDFN-, T- and P/Q-type voltage-gated Ca(2+) channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.
View Article and Find Full Text PDF