In this era of rapid global change, factors influencing the stability of ecosystems and their functions have come into the spotlight. For decades the relationship between stability and complexity has been investigated in modeled and empirical systems, yet results remain largely context dependent. To overcome this we leverage a multiscale inventory of fungi and bacteria ranging from single sites along an environmental gradient, to habitats inclusive of land, sea and stream, to an entire watershed.
View Article and Find Full Text PDFAnimals often acquire their microbial symbionts from the environment, but the mechanisms underlying how specificity of the association is achieved are poorly understood. We demonstrate that the conserved proton pump, V-type ATPase (VHA), plays a key role in the establishment of the model light-organ symbiosis between the squid Euprymna scolopes and its bacterial partner, Vibrio fischeri. Recruitment of V.
View Article and Find Full Text PDFCephalopods play a central ecological role across all oceans and realms. However, under the current climate crisis, their physiology and behaviour are impacted, and we are beginning to comprehend the effects of environmental stressors at a molecular level. Here, we study the Hawaiian bobtail squid (), known for its specific binary symbiosis with the bioluminescent bacterium acquired post-hatching.
View Article and Find Full Text PDFWe asked researchers from a range of disciplines across biology, engineering, and medicine to describe a current technological need. The goal is to provide a sample of the various technological gaps that exist and inspire future research projects.
View Article and Find Full Text PDFThere is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped.
View Article and Find Full Text PDFAll animals and plants likely require interactions with microbes, often in strong, persistent symbiotic associations. While the recognition of this phenomenon has been slow in coming, it will impact most, if not all, subdisciplines of biology.
View Article and Find Full Text PDFAt a rapid pace, biologists are learning the many ways in which resident microbes influence, and sometimes even control, their hosts to shape both health and disease. Understanding the biochemistry behind these interactions promises to reveal completely novel and targeted ways of counteracting disease processes. However, in our protocols and publications, we continue to describe these new results using a language that originated in a completely different context.
View Article and Find Full Text PDFOrgans that pump fluids by the coordinated beat of motile cilia through the lumen are integral to animal physiology. Such organs include the human airways, brain ventricles, and reproductive tracts. Although cilia organization and duct morphology vary drastically in the animal kingdom, ducts are typically classified as either carpet or flame designs.
View Article and Find Full Text PDFThe dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level.
View Article and Find Full Text PDFLight organs (LO) with symbiotic bioluminescent bacteria are hallmarks of many bobtail squid species. These organs possess structural and functional features to modulate light, analogous to those found in coleoid eyes. Previous studies identified four transcription factors and modulators (SIX, EYA, PAX6, DAC) associated with both eyes and light organ development, suggesting co-option of a highly conserved gene regulatory network.
View Article and Find Full Text PDFBackground: Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Although lacking an adaptive immune system and often living in habitats with dense and diverse bacterial populations, marine invertebrates thrive in the presence of potentially challenging microbial pathogens. However, the mechanisms underlying this resistance remain largely unexplored and promise to reveal novel strategies of microbial resistance. Here, we provide evidence that a mud-dwelling clam, s, synthesizes, stores, and secretes the antibiotic erythromycin.
View Article and Find Full Text PDFThe Hawaiian bobtail squid, , harvests its luminous symbiont, , from the surrounding seawater within hours of hatching. During embryogenesis, the host animal develops a nascent light organ with ciliated fields on each lateral surface. We hypothesized that these fields function to increase the efficiency of symbiont colonization of host tissues.
View Article and Find Full Text PDFIn symbioses established through horizontal transmission, evolution has selected for mechanisms that promote the recruitment of symbionts from the environment. Using the binary association between the Hawaiian bobtail squid, , and its symbiont, , we explored the first step of symbiont enrichment around sites where cells will enter host tissues. Earlier studies of the system had shown that, within minutes of hatching in natural seawater, ciliated epithelia of the nascent symbiotic tissue secrete a layer of mucus in response to exposure to the cell-wall biomolecule peptidoglycan (PGN) from non-specific bacterioplankton.
View Article and Find Full Text PDFMicrobes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest.
View Article and Find Full Text PDFSymbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them toward their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space.
View Article and Find Full Text PDFPlanktonic cells of the luminous marine bacterium establish themselves in the light-emitting organ of each generation of newly hatched bobtail squid. A symbiont population is maintained within the 6 separated crypts of the organ for the ∼9-month life of the host. In the wild, the initial colonization step is typically accomplished by a handful of planktonic cells, leading to a species-specific, but often multi-strain, symbiont population.
View Article and Find Full Text PDFSymbiosis, by its basic nature, depends on partner interactions that are mediated by cues and signals. This kind of critical reciprocal communication shapes the trajectory of host-microbe associations from their onset through their maturation and is typically mediated by both biochemical and biomechanical influences. Symbiotic partnerships often involve communities composed of dozens to hundreds of microbial species, for which resolving the precise nature of these partner interactions is highly challenging.
View Article and Find Full Text PDFMicrobes colonize the apical surfaces of polarized epithelia in nearly all animal taxa. In one example, the luminous bacterium Vibrio fischeri enters, grows to a dense population within, and persists for months inside, the light-emitting organ of the squid Euprymna scolopes. Crucial to the symbiont's success after entry is the ability to trigger the constriction of a host tissue region (the "bottleneck") at the entrance to the colonization site.
View Article and Find Full Text PDF