The lack of validated, distributed comprehensive genomic profiling assays for patients with cancer inhibits access to precision oncology treatment. To address this, we describe elio tissue complete, which has been FDA-cleared for examination of 505 cancer-related genes. Independent analyses of clinically and biologically relevant sequence changes across 170 clinical tumor samples using MSK-IMPACT, FoundationOne, and PCR-based methods reveals a positive percent agreement of >97%.
View Article and Find Full Text PDFAppl Immunohistochem Mol Morphol
May 2021
Diagnostic assays for molecular alterations highly correlated with prognosis, predictive efficacy or safety of therapeutics are valuable clinical tools and in some cases approved as companion diagnostics (CDx) by the Federal Food and Drug Administration. For example, assays that determine echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) translocation status have been approved as CDx assay for therapies that target this molecular alteration. Characterizing the parameters that may compromise diagnostic accuracy for molecular biomarkers is critical for optimal patient care.
View Article and Find Full Text PDFIntroduction: The availability of high-quality, rigorously validated diagnostic tests that can be broadly implemented is necessary to efficiently identify patients with anaplastic lymphoma kinase (ALK)-positive NSCLC who can potentially benefit from treatment with crizotinib. Here we present data on the recently approved Ventana ALK (D5F3) CDx Assay (Ventana Medical Systems, Tucson, AZ), the only immunohistochemistry (IHC)-based assay linked to treatment outcome.
Methods: NSCLC specimens prospectively tested for anaplastic lymphoma receptor tyrosine kinase gene (ALK) status by flourescent in situ hybridization (FISH) in the PROFILE 1014 clinical trial of crizotinib versus chemotherapy (N = 1018, including 179 ALK-positive and 754 ALK-negative specimens) were evaluated using the ALK (D5F3) CDx assay.
Introduction: The Blueprint Programmed Death Ligand 1 (PD-L1) Immunohistochemistry (IHC) Assay Comparison Project is an industrial-academic collaborative partnership to provide information on the analytical and clinical comparability of four PD-L1 IHC assays used in clinical trials.
Methods: A total of 39 NSCLC tumors were stained with four PD-L1 IHC assays (22C3, 28-8, SP142, and SP263), as used in the clinical trials. Three experts in interpreting their respective assays independently evaluated the percentages of tumor and immune cells staining positive at any intensity.
Introduction: The demonstration of anaplastic lymphoma kinase (ALK) positivity in non-small-cell lung cancer (NSCLC) has been hindered by the technical complexity and interpretative challenges of fluorescence in situ hybridization methods for detection of ALK gene rearrangement and by the inadequate sensitivity of existing immunohistochemistry (IHC) methods for ALK protein detection. In this study, we sought to increase the sensitivity of ALK IHC detection and to develop a brightfield assay for concurrent detection of ALK protein expression and ALK gene rearrangement.
Methods: We developed a horseradish peroxidase-based IHC detection system using the novel, nonendogenous hapten 3-hydroxy-2-quinoxaline (HQ) and tyramide.
Appl Immunohistochem Mol Morphol
January 2011
Background: The human homolog of the mouse double minute 2 (MDM2) oncogene is amplified in about 20% of sarcomas. The measurement of the MDM2 amplification can aid in classification and may provide a predictive value for recently formulated therapies targeting MDM2. We have developed and validated an automated bright field dual-color in situ hybridization application to detect MDM2 gene amplification.
View Article and Find Full Text PDFWith the advent of personalized medicine, anatomic pathology-based molecular assays, including in situ hybridization (ISH) and mRNA detection tests, are performed routinely in many laboratories and have increased in their clinical importance and complexity. These assays require appropriately fixed tissue samples that preserve both nucleic acid targets and histomorphology to ensure reliable test results for determining patient treatment options. However, all aspects of tissue processing, including time until tissue fixation, type of fixative, duration of fixation, post-fixation treatments, and sectioning of the sample, impact the staining results.
View Article and Find Full Text PDFThe importance of HER2 status in breast cancer management has focused attention on the ability of clinical assays to correctly assign HER2 amplification status. There is no consensus as to the best method for assessing HER2 status. Disadvantages of fluorescence in situ hybridization (FISH) testing include longer time required for staining and scoring slides, requirements for specialized training and fluorescence microscopy, and loss of the signal due to quenching of the fluorescent dye.
View Article and Find Full Text PDFA family of Mastermind-like (MAML) genes encodes critical transcriptional co-activators for Notch signaling, an evolutionarily conserved pathway with numerous roles in both development and human diseases. Notch receptors are cleaved upon ligand engagement and the intracellular domain of Notch shuttles to the nucleus. MAMLs form a functional DNA-binding complex with the cleaved Notch receptor and the transcription factor CSL, thereby regulating transcriptional events that are specific to the Notch pathway.
View Article and Find Full Text PDFThe MAML (mastermind-like) proteins are a family of three co-transcriptional regulators that are essential for Notch signaling, a pathway critical for cell fate determination. Though the functions of MAML proteins in normal development remain unresolved, their distinct tissue distributions and differential activities in cooperating with various Notch receptors suggest that they have unique roles. Here we show that mice with a targeted disruption of the Maml1 gene have severe muscular dystrophy.
View Article and Find Full Text PDFThe efficient functioning of striated muscle is dependent upon the proper alignment and coordinated activities of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, the exact molecular mechanisms dictating their cooperation and contributions during muscle differentiation and maintenance remain unknown. Recently, the muscle specific RING finger (MURF) family members have established themselves as excellent candidates for linking myofibril components (including the giant, multi-functional protein, titin/connectin), with microtubules, intermediate filaments, and nuclear factors.
View Article and Find Full Text PDFIn many tissues, actin monomers polymerize into actin (thin) filaments of precise lengths. Although the exact mechanisms involved remain unresolved, it is proposed that "molecular rulers" dictate the lengths of the actin filaments. The giant nebulin molecule is a prime candidate for specifying thin filament lengths in striated muscle, but this idea has never been proven.
View Article and Find Full Text PDFThe efficient functioning of striated muscle is dependent upon the structure of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, little is known about how these networks function together during muscle differentiation and maintenance. In vitro studies suggest that members of the muscle-specific RING finger protein family (MURF-1, 2, and 3) act as cytoskeletal adaptors and signaling molecules by associating with myofibril components (including the giant protein, titin), microtubules and/or nuclear factors.
View Article and Find Full Text PDFCARP, ankrd-2/Arpp, and DARP, are three members of a conserved gene family, referred to here as MARPs (muscle ankyrin repeat proteins). The expression of MARPs is induced upon injury and hypertrophy (CARP), stretch or denervation (ankrd2/Arpp), and during recovery following starvation (DARP), suggesting that they are involved in muscle stress response pathways. Here, we show that MARP family members contain within their ankyrin repeat region a binding site for the myofibrillar elastic protein titin.
View Article and Find Full Text PDFNebulin is a giant, modular sarcomeric protein and although it was discovered over 2 decades ago, it remains one of the most nebulous components of striated muscle. Previously, several groups identified nebulin as the prime candidate molecule for functioning as a "ruler" to specify the precise lengths of the actin (thin) filaments in skeletal muscle, yet this proposal has never been proven. This article reviews the evidence implicating nebulin as a thin filament ruler, including the most recent studies highlighting its potentially extensive isoform diversity and exciting reports revealing its expression in cardiac tissue.
View Article and Find Full Text PDFNebulin is a giant (M(r) 750-850kDa), modular sarcomeric protein proposed to regulate the assembly, and to specify the precise lengths of actin (thin) filaments in vertebrate skeletal muscles. Nebulin's potential role as a molecular template is based on its structural and biochemical properties. Its central approximately 700kDa portion associates with actin along the entire length of the thin filament, its N-terminal region extends to thin filament pointed ends, and approximately 80kDa of its C-terminal region integrates within the Z-line lattice.
View Article and Find Full Text PDFAnnu Rev Cell Dev Biol
May 2003
Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated.
View Article and Find Full Text PDFThe COOH-terminal A168-170 region of the giant sarcomeric protein titin interacts with muscle-specific RING finger-1 (MURF-1). To investigate the functional significance of this interaction, we expressed green fluorescent protein fusion constructs encoding defined fragments of titin's M-line region and MURF-1 in cardiac myocytes. Upon expression of MURF-1 or its central region (containing its titin-binding site), the integrity of titin's M-line region was dramatically disrupted.
View Article and Find Full Text PDFWe describe here a novel sarcomeric 145-kD protein, myopalladin, which tethers together the COOH-terminal Src homology 3 domains of nebulin and nebulette with the EF hand motifs of alpha-actinin in vertebrate Z-lines. Myopalladin's nebulin/nebulette and alpha-actinin-binding sites are contained in two distinct regions within its COOH-terminal 90-kD domain. Both sites are highly homologous with those found in palladin, a protein described recently required for actin cytoskeletal assembly (Parast, M.
View Article and Find Full Text PDFThe giant myofibrillar protein titin contains within its C-terminal region a serine-threonine kinase of unknown function. We have identified a novel muscle specific RING finger protein, referred to as MURF-1, that binds in vitro to the titin repeats A168/A169 adjacent to the titin kinase domain. In myofibrils, MURF-1 is present within the periphery of the M-line lattice in close proximity to titin's catalytic kinase domain, within the Z-line lattice, and also in soluble form within the cytoplasm.
View Article and Find Full Text PDFStrict regulation of actin thin filament length is critical for the proper functioning of sarcomeres, the basic contractile units of myofibrils. It has been hypothesized that a molecular template works with actin filament capping proteins to regulate thin filament lengths. Nebulin is a giant protein ( approximately 800 kDa) in skeletal muscle that has been proposed to act as a molecular ruler to specify the thin filament lengths characteristic of different muscles.
View Article and Find Full Text PDFAdv Exp Med Biol
December 2000
Sarcomeres of cardiac muscle are comprised of numerous proteins organized in an elegantly precise order. The exact mechanism of how these proteins are assembled into myofibrils during heart development is not yet understood, although existing in vitro and in vivo model systems have provided great insight into this complex process. It has been proposed by several groups that the giant elastic protein titin acts as a "molecular template" to orchestrate sarcomeric organization during myofibrillogenesis.
View Article and Find Full Text PDFAm J Reprod Immunol
July 2000
Problem: Qa-2 protein, the Ped gene product, is linked to the cell surface by a glycosylphosphatidylinositol (GPI) anchor. Some GPI-linked proteins can be spontaneously incorporated into the membranes of cells via a technique called "protein painting."We investigated whether Qa-2 could be painted onto T cells and embryos and whether the painted protein would be functional.
View Article and Find Full Text PDFThe Qa-2 protein, a glycosylphosphatidylinositol (GPI)-linked major histocompatibility complex (MHC) Class Ib molecule found on the surface of mouse T-cells and preimplantation embryos, is the product of the preimplantation embryo development (Ped) gene. The Ped gene regulates the rate of early embryonic development and subsequent embryo survival. T-cells treated with anti-Qa-2 monoclonal antibody (mAb) and cross-linked with a secondary antibody, in the presence of a co-stimulatory signal, undergo increased proliferation.
View Article and Find Full Text PDFApoptosis, as determined by blastomere and DNA fragmentation, occurs in many preimplantation mouse embryos. To investigate which genes contribute to apoptosis in preimplantation embryos, we used the reverse transcription-polymerase chain reaction to assess mRNA levels for seven genes in the caspase family and seven genes in the BCL-2 family. All caspase mRNAs were detectable in oocytes, while expression in preimplantation embryos varied in a stage-specific manner.
View Article and Find Full Text PDF