Publications by authors named "McCubrey J"

The new chemical entity GIT-27NO was created by the covalent linkage of a NO moiety to the anti-inflammatory isoxazoline VGX-1027. The compound has been shown to possess powerful anticancer effects both in vitro and in vivo. However, its effects on nonsolid and metastatic forms of tumors have not yet been investigated.

View Article and Find Full Text PDF

Yin Yang 1 (YY1), a multifunctional transcription factor, has been shown to be involved in the pathogenesis of several cancer types. However, its role in hematological malignancies has not yet been fully investigated. In the present study, using computational methods, we showed that YY1 transcript levels were significantly increased in the high-grade lymphomas, including Burkitt's lymphoma and diffuse large B-cell lymphoma (DLBCL), compared with those of both low-grade lymphomas and normal B-cells.

View Article and Find Full Text PDF

The cancer stem cell theory entails the existence of a hierarchically organized, rare population of cells which are responsible for tumor initiation, self-renewal/maintenance, and mutation accumulation. The cancer stem cell proposition could explain the high frequency of cancer relapse and resistance to currently available therapies. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway regulates a wide array of physiological cell functions which include differentiation, proliferation, survival, metabolism, autophagy, and motility.

View Article and Find Full Text PDF

Diacylglycerol kinases (DGKs) are key regulators of diacylglycerol-dependent signaling pathways. Among the 10 DGK isoforms, DGK-zeta is the only nuclear form that contains a nuclear localization signal. Here, by site-directed mutagenesis, we showed that DGK-zeta also displays a functional independent nuclear export signal (NES) sequence between the amino acid residues 362-370.

View Article and Find Full Text PDF

Background: The Raf/MAPK kinase/extracellular-signal-regulated kinase pathway is often activated by genetic alterations in upstream signaling molecules. An integral component of this pathway, BRAF, is also activated by mutation, especially in melanoma and thyroid cancers. The Raf/MAPK kinase/extracellular-signal-regulated kinase pathway has profound effects on proliferative, apoptotic and differentiation pathways as well as the sensitivity and resistance to chemotherapeutic drugs.

View Article and Find Full Text PDF

Background: The PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a central role in cell growth, proliferation and survival not only under physiological conditions but also in a variety of tumor cells. Therefore, the PI3K/Akt/mTOR axis may be a critical target for cancer therapy.

Objective: This review discusses how PI3K/Akt/mTOR signaling network is constitutively active in acute myelogenous leukemia (AML), where it strongly influences proliferation, survival and drug-resistance of leukemic cells, and how effective targeting of this pathway with pharmacological inhibitors, used alone or in combination with existing drugs, may result in suppression of leukemic cell growth, including leukemic stem cells.

View Article and Find Full Text PDF

Background: Multidrug resistance (MDR) proteins have been associated with the lack of chemotherapy response. Expression of these proteins has been described in the prostate, but there is no information about their role in the chemotherapy response of prostate cancer (PC). We studied the gene and protein expression of MDR proteins in primary cell cultures from PC tumors and PC cell lines, their relationship with chemotherapy and their effects on cell survival.

View Article and Find Full Text PDF

Activation of the nuclear transcription factor-kappaB (NF-kappaB) has been implicated in liver tumorigenesis. We evaluated the effects of a novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), in two human liver cancer cell lines HA22T/VGH and HuH-6. DHMEQ treatment dose dependently decreased the DNA-binding capacity of the NF-kappaB p65 subunit, inhibited cell growth and proliferation, and increased apoptosis as shown by caspase activation, release of cytochrome c, poly(ADP-ribose) polymerase cleavage, and down-regulation of survivin.

View Article and Find Full Text PDF

Malignant melanoma is an aggressive tumor of the skin with a poor prognosis for patients with advanced disease. It is resistant to current therapeutic approaches. In melanoma, both the Ras/Raf/MEK/ERK (MAPK) and the PI3K/AKT (AKT) signalling pathways are constitutively activated through multiple mechanisms.

View Article and Find Full Text PDF

Application of the HIV protease inhibitor saquinavir (Saq) to cancer chemotherapy is limited by its numerous side effects. To overcome this toxicity, we modified the original compound by covalently attaching a nitric oxide (NO) group. We compared the efficacy of the parental and NO-modified drugs in vitro and in vivo.

View Article and Find Full Text PDF

Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies.

View Article and Find Full Text PDF

The Yin Yang 1 (YY1) transcription factor has a pivotal role in normal biological processes such as development, differentiation, replication and cell proliferation exerting its effects on a huge number of genes involved in these processes. Mechanisms of YY1 action are related to its ability to initiate, activate, or repress transcription depending upon the context in which it binds. The role of YY1 played in cancer has been recently explored.

View Article and Find Full Text PDF

Resistance to multiple chemotherapeutic agents is a common clinical problem which can arise during cancer treatment. Drug resistance often involves overexpression of the multidrug resistance MDR1 gene, encoding P-glycoprotein (P-gp), a 170-kDa glycoprotein belonging to the ATP-binding cassette superfamily of membrane transporters. We have recently demonstrated apoptosis-induced, caspase-3-dependent P-gp cleavage in human T-lymphoblastoid CEM-R VBL100 cells.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases (PI3Ks) are a group of lipid kinases that regulate signaling pathways involved in cell proliferation, adhesion, survival and motility. The PI3K pathway is considered to play an important role in tumorigenesis. Activating mutations of the p110alpha subunit of PI3K (PIK3CA) have been identified in a broad spectrum of tumors.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) and its receptor (EGFR) as well as the EGFR-coupled Ras>Raf>MEK>ERK pathway are known to affect the survival of cancer cells upon chemotherapeutic treatment. In the present investigation, we analyzed the role of EGFR signaling pathways for the activity of artesunate towards cancer cells. The microarray-based mRNA expression of genes involved in EGFR signaling pathway was correlated with the 50% inhibition concentrations (IC50) of 55 tumor cell lines for artesunate.

View Article and Find Full Text PDF

To potentiate the response of acute myelogenous leukemia (AML) cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity, we have examined the efficacy of a combination with perifosine, a novel phosphatidylinositol-3-kinase (PI3K)/Akt signaling inhibitor. The rationale for using such a combination is that perifosine was recently described to increase TRAIL-R2 receptor expression and decrease the cellular FLICE-inhibitory protein (cFLIP) in human lung cancer cell lines. Perifosine and TRAIL both induced cell death by apoptosis in the THP-1 AML cell line, which is characterized by constitutive PI3K/Akt activation, but lacks functional p53.

View Article and Find Full Text PDF
Article Synopsis
  • Protein phosphatase 2A (PP2A) is a complex enzyme made up of three different types of subunits, and there's a wide variety of regulatory B subunits that define different PP2A enzymes.
  • In the study, the B56alpha subunit was found to be important in regulating the dephosphorylation of the BCL2 protein, which is involved in cell survival and apoptosis.
  • It was discovered that the stress kinase PKR, which is active in certain cells, regulates B56alpha and influences its localization and function, affecting cellular response to stress and drug resistance.
View Article and Find Full Text PDF

Bcl-2 is an anti-apoptotic protein that is frequently overexpressed in cancer cells but its role in carcinogenesis is not clear. We are interested in how Bcl-2 expression affects non-cancerous breast cells and its role in the cell cycle. We prepared an MCF10A breast epithelial cell line that stably overexpressed Bcl-2.

View Article and Find Full Text PDF

Males of advanced age represent a rapidly growing population at risk for prostate cancer. In the contemporary setting of earlier detection, a majority of prostate carcinomas are still clinically localized and often treated using radiation therapy. Our recent studies have shown that premature cellular senescence, rather than apoptosis, accounts for most of the clonogenic death induced by clinically relevant doses of irradiation in prostate cancer cells.

View Article and Find Full Text PDF

Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemotherapeutic drugs and the involvement of growth-promoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease.

View Article and Find Full Text PDF

Background: The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors.

Objective: This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells.

Methods: We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular.

View Article and Find Full Text PDF