Thermal proteome profiling (TPP) is an invaluable tool for functional proteomics studies that has been shown to discover changes associated with protein-ligand, protein-protein, and protein-RNA interaction dynamics along with changes in protein stability resulting from cellular signaling. The increasing number of reports employing this assay has not been met concomitantly with new approaches leading to advancements in the quality and sensitivity of the corresponding data analysis. The gap between data acquisition and data analysis tools is important to fill as TPP findings have reported subtle melt shift changes related to signaling events such as protein posttranslational modifications.
View Article and Find Full Text PDFObjectives: AXL, a transmembrane receptor tyrosine kinase, is highly expressed and associated with poor prognosis in non-small cell lung cancer (NSCLC). Bemcentinib (BGB324), a selective orally bioavailable small molecule AXL inhibitor, synergizes with docetaxel in preclinical models. We performed a phase I trial of bemcentinib plus docetaxel in previously treated advanced NSCLC.
View Article and Find Full Text PDFThe study of low-abundance proteins is a challenge to discovery-based proteomics. Mass spectrometry (MS) applications, such as thermal proteome profiling (TPP), face specific challenges in the detection of the whole proteome as a consequence of the use of nondenaturing extraction buffers. TPP is a powerful method for the study of protein thermal stability, but quantitative accuracy is highly dependent on consistent detection.
View Article and Find Full Text PDFPurpose: NUC-1031 is a first-in-class ProTide modification of gemcitabine. In PRO-002, NUC-1031 was combined with carboplatin in recurrent ovarian cancer.
Patients And Methods: NUC-1031 was administered on days 1 and 8 with carboplatin on day 1 every 3 weeks for up to six cycles.
The CETSA and Thermal Proteome Profiling (TPP) analytical methods are invaluable for the study of protein-ligand interactions and protein stability in a cellular context. These tools have increasingly been leveraged in work ranging from understanding signaling paradigms to drug discovery. Consequently, there is an important need to optimize the data analysis pipeline that is used to calculate protein melt temperatures () and relative melt shifts from proteomics abundance data.
View Article and Find Full Text PDFHistorically, research and development (R&D) in the pharmaceutical sector has predominantly been an in-house activity. To enable investments for game changing late-stage assets and to enable better and less costly go/no-go decisions, most companies have employed a fail early paradigm through the implementation of clinical proof-of-concept organizations. To fuel their pipelines, some pioneers started to complement their internal R&D efforts through collaborations as early as the 1990s.
View Article and Find Full Text PDFGenerating purified protein for GLP toxicology studies (GLP-Tox) represents an important and often rate limiting step in the biopharmaceutical drug development process. Toxicity testing requires large amounts of therapeutic protein (>100 g), typically produced in a single 500-2,500 L bioreactor, using the final CHO clonally derived cell line (CDCL). One approach currently used to save time is to manufacture GLP-Tox material using pools of high-producing CHO CDCLs instead of waiting for the final CDCL.
View Article and Find Full Text PDFChinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc-fusion proteins. Creating and characterizing the stable CHO clonally-derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious process. Therefore, CHO pools have increasingly been used to rapidly produce protein to support and enable preclinical drug development.
View Article and Find Full Text PDFBiotechnol Prog
February 2015
Cell culture process conditions including media components and bioreactor operation conditions have a profound impact on recombinant protein quality attributes. Considerable changes in the distribution of galactosylated glycoforms (G0F, G1F, and G2F) were observed across multiple CHO derived recombinant proteins in development at Eli Lilly and Company when switching to a new chemically defined (CD) media platform condition. In the new CD platform, significantly lower G0F percentages and higher G1F and G2F were observed.
View Article and Find Full Text PDFInt J Clin Pharmacol Ther
June 2011
Unlabelled: Roflumilast is a novel, orally active, selective phosphodiesterase 4 inhibitor recently approved for the treatment of severe COPD. The pharmacological effect is mediated mainly by its active metabolite roflumilast N-oxide.
Objective: This doubleblind, 2-period cross-over study was conducted to investigate the potential effects of concomitant roflumilast on pharmacokinetics and pharmacodynamics of warfarin and vice versa.
Background: Roflumilast is an oral, selective phosphodiesterase (PDE)-4 inhibitor in development for the treatment of chronic obstructive pulmonary disease (COPD). Both roflumilast and its metabolite roflumilast N-oxide have anti-inflammatory properties that contribute to overall pharmacological activity.
Objectives: To model the pharmacokinetics of roflumilast and roflumilast N-oxide, evaluate the influence of potential covariates, use the total PDE4 inhibitory activity (tPDE4i) concept to estimate the combined inhibition of PDE4 by roflumilast and roflumilast N-oxide, and use individual estimates of tPDE4i to predict the occurrence of adverse events (AEs) in patients with moderate-to-severe COPD.
Int J Clin Pharmacol Ther
April 2009
Objective: To investigate the effects of steady state erythromycin on the pharmacokinetics of roflumilast and its pharmacodynamically active metabolite roflumilast N-oxide in healthy subjects. Both roflumilast and roflumilast N-oxide have similar intrinsic PDE4 inhibitory activity; the total PDE4 inhibition (tPDE4i) in humans is likely due to the combined effect of roflumilast and roflumilast N-oxide.
Methods: Subjects (n = 16) received single oral roflumilast 500 microg once daily (Days 1 and 15), and repeated oral erythromycin 500 mg three times daily (Days 9 - 21).
Effects of single and multiple doses of oral ketoconazole on roflumilast and its active metabolite, roflumilast N-oxide, were investigated in healthy subjects. In study 1, subjects (n = 26) received oral roflumilast 500 microg once daily for 11 days and a concomitant 200-mg single dose of ketoconazole on day 11. In study 2, subjects (n = 16) received oral roflumilast 500 microg on days 1 and 11 and a repeated dose of ketoconazole 200 mg twice daily from days 8 to 20.
View Article and Find Full Text PDFJ Asthma Allergy
September 2008
Ciclesonide is a novel corticosteroid (CS) for the treatment of asthma and allergic rhinitis. After administration, the parent compound ciclesonide is converted by intracellular airway esterases to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC). We investigated the in vitro activation of ciclesonide and further esterification of des-CIC to (mainly) des-CIC oleate in several human target organ test systems.
View Article and Find Full Text PDFBackground: Ciclesonide is a novel inhaled corticosteroid for the treatment of airway inflammation. In this study we investigated uptake and in vitro metabolism of ciclesonide in human alveolar type II epithelial cells (A549). Ciclesonide uptake was compared with fluticasone propionate, an inhaled corticosteroid that is not metabolized in lung tissue.
View Article and Find Full Text PDFBackground: The therapeutic effect of inhaled corticosteroids (ICS) may be affected by the metabolism of the drug in the target organ. We investigated the in vitro metabolism of beclomethasone dipropionate (BDP), budesonide (BUD), ciclesonide (CIC), and fluticasone propionate (FP) in human lung precision-cut tissue slices. CIC, a new generation ICS, is hydrolyzed by esterases in the upper and lower airways to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC).
View Article and Find Full Text PDFCiclesonide (CIC) is an inhaled glucocorticosteroid. This study aimed to identify esterases involved in the metabolism of CIC to the active metabolite desisobutyryl-ciclesonide (des-CIC), and to measure hydrolysis rates in human liver, lung and plasma and normal human bronchial epithelial (NHBE) cells in vitro. Ciclesonide (5 microM and 500 microM) was incubated with microsomal or cytosolic fractions from liver, lung and plasma (n=4 for each) and des-CIC formation was determined by reverse-phase high-performance liquid chromatography with U.
View Article and Find Full Text PDFThe main goal of the present study was to investigate the absorption and disposition of levocetirizine dihydrochloride, the R enantiomer of cetirizine dihydrochloride, following a single oral administration (5 mg) of the 14C-labelled compound in healthy volunteers. Configurational stability was also investigated. Levocetirizine was rapidly and extensively absorbed: 85.
View Article and Find Full Text PDF1. The plasma pharmacokinetics, excretion and metabolism of DX-9065a were studied in the healthy male Caucasian volunteer after a single intravenous dose of 10 mg 14C-labelled DX-9065a. 2.
View Article and Find Full Text PDFEsterases in human liver microsomes hydrolysed fluazifop-butyl (Vmax 9.8 +/- 1.6 mumol/min/g tissue), paraoxon (Vmax 47.
View Article and Find Full Text PDFLiver microsomal paraoxonase, aryl esterase and fluazifop butyl esterase (carboxylesterase) were induced by pretreatment of rat with phenobarbitone but not by beta-naphthoflavone or clofibric acid. In the extrahepatic tissues lung cytosolicfluazifop butyl and phenylacetate esterase were induced.
View Article and Find Full Text PDFBiochem Pharmacol
January 1993
In the present study, the distribution and nature of esterases in the rat which hydrolysed fluazifop-butyl, carbaryl, paraoxon and phenylacetate were investigated. Vmax and Km values for the hydrolysis reactions were determined. Fluazifop-butyl was hydrolysed to fluazifop by rat liver (Vmax mumol/min/g microsomes 6.
View Article and Find Full Text PDFA patient developed a drug rash and neutropenia while receiving tobramycin, ticarcillin and flucloxacillin intravenously for osteomyelitis. Incorporation of these antibiotics into in vitro cultures of bone marrow granulocyte macrophage precursors (CFU-C) showed no inhibition of the patient's marrow or normal marrow by tobramycin. The patient's marrow was more sensitive to ticarcillin than were control cultures, and all cultures incorporating flucloxacillin failed to show growth of CFU-C.
View Article and Find Full Text PDF