Background: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult.
View Article and Find Full Text PDFAir liquid interfaced (ALI) epithelial barriers are essential for homeostatic functions such as nutrient transport and immunological protection. Dysfunction of such barriers are implicated in a variety of autoimmune and inflammatory disorders and, as such, sensors capable of monitoring barrier health are integral for disease modelling, diagnostics and drug screening applications. To date, gold-standard electrical methods for detecting barrier resistance require rigid electrodes bathed in an electrolyte, which limits compatibility with biological architectures and is non-physiological for ALI.
View Article and Find Full Text PDFIntroduction: Lung cancer in never smokers (LCINS) accounts for 15% of lung cancers diagnosed in the UK, making it the 8th most common cancer. There are few robust studies specific to the LCINS population making data surrounding the incidence and mortality of LCINS incomplete, leaving many gaps in our understanding of the needs of this population.
Methods: To address a lack of research in this important area, the UK National Cancer Research Institute Lung Study Group (NCRI-LSG) undertook a national survey and hosted a research strategy day to define key research priorities.
Quantitative proteomics is able to provide a comprehensive, unbiased description of changes to cells caused by viral infection, but interpretation may be complicated by differential changes in infected and uninfected 'bystander' cells, or the use of non-physiological cellular models. In this paper, we use fluorescence-activated cell sorting (FACS) and quantitative proteomics to analyse cell-autonomous changes caused by authentic SARS-CoV-2 infection of respiratory epithelial cells, the main target of viral infection . First, we determine the relative abundance of proteins in primary human airway epithelial cells differentiated at the air-liquid interface (basal, secretory and ciliated cells).
View Article and Find Full Text PDFBackground: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection.
View Article and Find Full Text PDFSuccessful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention implementable alongside vaccination programmes. Camostat and nafamostat are serine protease inhibitors that inhibit SARS-CoV-2 viral entry in vitro but have not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and while camostat is orally available, both drugs have extremely short plasma half-lives.
View Article and Find Full Text PDFThe global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the rapid development of new therapies against coronavirus disease 2019 (COVID-19) infection. Here, we present the identification of 200 approved drugs, appropriate for repurposing against COVID-19. We constructed a SARS-CoV-2-induced protein network, based on disease signatures defined by COVID-19 multiomics datasets, and cross-examined these pathways against approved drugs.
View Article and Find Full Text PDFFace masks and personal respirators are used to curb the transmission of SARS-CoV-2 in respiratory droplets; filters embedded in some personal protective equipment could be used as a non-invasive sample source for applications, including at-home testing, but information is needed about whether filters are suited to capture viral particles for SARS-CoV-2 detection. In this study, we generated inactivated virus-laden aerosols of 0.3-2 microns in diameter (0.
View Article and Find Full Text PDFCancer Treat Rev
September 2021
Adenocarcinoma has become the most prevalent lung cancer sub-type and its frequency is increasing. The earliest stages in the development of lung adenocarcinomas are visible using modern computed tomography (CT) as ground glass nodules. These pre-invasive nodules can progress over time to become invasive lung adenocarcinomas.
View Article and Find Full Text PDFSOX2 is a pleiotropic nuclear transcription factor with major roles in stem cell biology and in development. Over the last 10 years SOX2 has also been implicated as a lineage-specific oncogene, notably in squamous carcinomas but also neurological tumours, particularly glioblastoma. Squamous carcinomas (SQCs) comprise a common group of malignancies for which there are no targeted therapeutic interventions.
View Article and Find Full Text PDFPatients diagnosed with lung squamous cell carcinoma (LUSC) have limited targeted therapies. We report here the identification and characterisation of BCL11A, as a LUSC oncogene. Analysis of cancer genomics datasets revealed BCL11A to be upregulated in LUSC but not in lung adenocarcinoma (LUAD).
View Article and Find Full Text PDFRationale: Improving the early detection and chemoprevention of lung cancer are key to improving outcomes. The pathobiology of early squamous lung cancer is poorly understood. We have shown that amplification of sex-determining region Y-box 2 (SOX2) is an early and consistent event in the pathogenesis of this disease, but its functional oncogenic potential remains uncertain.
View Article and Find Full Text PDFAdvanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common.
View Article and Find Full Text PDFCancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the cancer cell motile factor RANKL.
View Article and Find Full Text PDFBackground: Despite the molecular heterogeneity of standard-risk acute myeloid leukemia (AML), treatment decisions are based on a limited number of molecular genetic markers and morphology-based assessment of remission. Sensitive detection of a leukemia-specific marker (e.g.
View Article and Find Full Text PDFCirculating tumour DNA (ctDNA) is that fraction of circulating DNA that is derived from a patient's cancer. For a number of years, patients with haematological malignancies have had their disease diagnosed or monitored using tests based on detecting specific cytological or molecular biomarkers in blood. It has long been appreciated that the more common epithelial malignancies also shed DNA into the blood and that this tumour-derived DNA generally contributes a minor percentage of the overall cell-free DNA burden in peripheral blood.
View Article and Find Full Text PDFIntroduction: There is much interest in the use of noninvasive biomarkers in the management of lung cancer, particularly with respect to early diagnosis and monitoring the response to intervention. Cell-free tumor DNA in patients with cancer has been shown to hold potential as a noninvasive biomarker, in which the response to treatment may be evaluated using a blood test only. Multiple technologies have been suggested as being appropriate to measure cell-free tumor DNA.
View Article and Find Full Text PDFBackground: Squamous cell carcinoma of the lung is a common cancer with 95% mortality at 5 years. These cancers arise from preinvasive lesions, which have a natural history of development progressing through increasing severity of dysplasia to carcinoma in situ (CIS), and in some cases, ending in transformation to invasive carcinoma. Synchronous preinvasive lesions identified at autopsy have been previously shown to be clonally related.
View Article and Find Full Text PDFCopy number alterations are frequently found in colorectal cancer (CRC), and recurrent gains or losses are likely to correspond to regions harbouring genes that promote or impede carcinogenesis respectively. Gain of chromosome 13q is common in CRC but, because the region of gain is frequently large, identification of the driver gene(s) has hitherto proved difficult. We used array comparative genomic hybridization to analyse 124 primary CRCs, demonstrating that 13q34 is a region of gain in 35% of CRCs, with focal gains in 4% and amplification in a further 1.
View Article and Find Full Text PDFThe efficient delivery of personalized medicine is a key goal of healthcare over the next decade. It is likely that PCR strategies will play an important role in the delivery of this goal. Digital PCR has certain advantages over more traditional PCR protocols.
View Article and Find Full Text PDFRearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e.
View Article and Find Full Text PDF