The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. In this study, we investigated the contribution of N-glycosyl modification to the structure and function of SERT in two model systems: wild-type SERT expressed in sialic acid-defective Lec4 Chinese hamster ovary (CHO) cells and a mutant form (after site-directed mutagenesis of Asn-208 and Asn-217 to Gln) of SERT, QQ, expressed in parental CHO cells. In both systems, SERT monomers required modification with both complex oligosaccharide residues to associate with each other and to function in homo-oligomeric forms.
View Article and Find Full Text PDFBy utilization of polymerase chain reaction techniques, single-stranded DNA of defined length and sequence containing a purine analog, 2-chloroadenine, in place of adenine was synthesized. This was accomplished by a combination of standard polymerase chain amplification reactions with Thermus aquaticus DNA polymerase in the presence of four normal deoxynucleoside triphosphates, M13 duplex DNA as template, and two primers to generate double-stranded DNA 118 bases in length. An asymmetric polymerase chain reaction, which produced an excess of single-stranded 98-base DNA, was then conducted with 2-chloro-2'-deoxy-adenosine 5'-triphosphate in place of dATP and with only one primer that annealed internal to the original two primers.
View Article and Find Full Text PDFThe purine analog, 2-chloro-2'-deoxyadenosine triphosphate (CldATP), was incorporated enzymatically in place of dATP into the minus strand of M13mp18 duplex DNA. Its effect on protein-DNA interactions was assessed by determining the amount of DNA cleavage by type II restriction endonucleases. Substitution of chloroadenine (CIAde) for adenine (Ade) in DNA appreciably decreased the amount and rate of DNA cleavage of the minus strand when the analog was situated within the appropriate endonuclease recognition site.
View Article and Find Full Text PDF2-Chloro-2'-deoxyadenosine 5'-triphosphate (CldATP) was compared with dATP as a substrate for DNA synthesis by bacterial and viral DNA polymerases in vitro. Lengths of chain extension and DNA synthesis pause sites were determined by comparison with products generated by dideoxynucleotide sequencing methods on the same end-labeled primer/template duplex after high-resolution polyacrylamide gel electrophoresis. Reverse transcriptase (RT) from human immunodeficiency virus (HIV-1) and avian myeloblastosis virus (AMV) incorporated CldATP efficiently.
View Article and Find Full Text PDFStriking relationships were observed, in vitro, between the molecular constitution of synthetic entities, their aggregation-inhibitory potency (as determined in ADP-induced human blood platelet aggregation), and their cellular toxicity (as assessed by their inhibition of cultured mouse fibroblast L-cell growth). Effects exerted on platelets tended to reflect interactions between the molecules' aggregation-inhibitory specific functions and the platelets' corresponding target sites, while fibroblasts were generally more susceptible to the molecular constitution's hydrophobic character. The hyperbolic relationships between concentrations effecting 50% inhibition and slopes of concentration-response curves reflect net activity from both specific and nonspecific receptor site interactions, with the latter being dominant, and indicated that the assays approximated equilibrium systems.
View Article and Find Full Text PDF