Publications by authors named "McCarrey J"

Safety learning during threat and adversity is critical for behavioral adaptation, resiliency, and survival. Using a novel mouse paradigm involving thermal threat, we recently demonstrated that safety learning is highly susceptible to social isolation stress. Yet, our previous study primarily considered male mice and did not thoroughly scrutinize the relative impacts of stress on potentially distinct defensive mechanisms implemented by males and females during the thermal safety task.

View Article and Find Full Text PDF

Background: Common marmosets (Callithrix jacchus) are increasingly recognized as valuable nonhuman primates (NHPs) for biomedical research due to their small size and short reproductive cycle and lifespan relative to other NHP species. Maximizing the utility of captive research marmosets, including genetically manipulated animals, will require the use of assisted reproductive techniques (ART) including manipulation, storage, and sharing of marmoset sperm. Here, we identify characteristics of high-quality semen samples and validate a simple method for selecting high-quality sperm.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling due to steric similarities to endogenous hormones. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) and differentially expressed genes (DEGs) that predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many EDCs persists over multiple generations.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling following exposure due to steric similarities to endogenous hormones within the body. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) that accompany dysregulation of normal gene expression patterns that appear to predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many different EDCs often persists over multiple subsequent generations, even with no further exposure to the causative EDC.

View Article and Find Full Text PDF
Article Synopsis
  • The X-linked family of miRNAs in eutherian mammals, located near conserved protein-coding genes on the X chromosome, are primarily expressed in the testis and may play a role in sperm development and male fertility.
  • Research found that these miRNAs originated from MER91C DNA transposons, and while knocking out single miRNAs didn't show major effects, deleting five clusters significantly impaired male fertility in mice.
  • Although the sperm from these modified mice had normal counts and appearance, they were less competitive in mating situations, highlighting the miRNAs' role in enhancing sperm competitiveness and overall male reproductive success.
View Article and Find Full Text PDF

Retention of source cell-type epigenetic memory may mitigate the potential for induced pluripotent stem cells (iPSCs) to fully achieve transitions in cell fate . While this may not preclude the use of iPSC-derived somatic cell types for therapeutic applications, it becomes a major concern impacting the potential use of iPSC-derived germline cell types for reproductive applications. The transition from a source somatic cell type to iPSCs and then on to germ-cell like cells (GCLCs) recapitulates two major epigenetic reprogramming events that normally occur during development -embryonic reprogramming in the epiblast and germline reprogramming in primordial germ cells (PGCs).

View Article and Find Full Text PDF

New evidence in mice suggests that cells expressing the transcription factor FOXC2 may form a reservoir of quiescent stem cells that contributes to sperm formation.

View Article and Find Full Text PDF

Analyzing whole-genome bisulfite and related sequencing datasets is a time-intensive process due to the complexity and size of the input raw sequencing files and lengthy read alignment step requiring correction for conversion of all unmethylated Cs to Ts genome-wide. The objective of this study was to modify the read alignment algorithm associated with the whole-genome bisulfite sequencing methylation analysis pipeline (wg-blimp) to shorten the time required to complete this phase while retaining overall read alignment accuracy. Here, we report an update to the recently published pipeline wg-blimp achieved by replacing the use of the bwa-meth aligner with the faster gemBS aligner.

View Article and Find Full Text PDF

Despite rapid evolution across eutherian mammals, the X-linked family miRNAs are located in a region flanked by two highly conserved protein-coding genes ( and ) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked family miRNAs were derived from the MER91C DNA transposons.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the final step in genome-wide profiling of epigenetic factors, which involves DNA deep sequencing and the need for computational analysis of large datasets to understand cell fate and function.
  • It outlines specific methods for analyzing different types of epigenomic data, such as WGBS for DNA methylation, ChIP-seq for histone modifications, ATAC-seq for chromatin accessibility, and Hi-C-seq for genomic interactions.
  • The text also introduces Chromatin State Discovery and Characterization (ChromHMM) to integrate these analyses with RNA-seq data for a comprehensive view of epigenetic programming linked to gene expression.
View Article and Find Full Text PDF

Epigenomics encompasses analyses of a variety of different epigenetic parameters which, collectively, make up the epigenetic programming that dictates cell fate and function. Here, protocols are provided for four different epigenomic methods including whole-genome bisulfite sequencing (WGBS) to assess DNA methylation patterns, chromatin immunoprecipitation-sequencing (ChIP-seq) to assess genomic patterns of either specific histone modifications or bound transcription factors, the assay for transposase-accessible chromatin-sequencing (ATAC-seq) to assess genomic patterns of chromatin accessibility, and high-throughput chromosome conformation capture-sequencing (Hi-C-seq) to assess three-dimensional interactions among distant genomic regions, plus computational methodology to integrate data from those four methodologies using Chromatin State Discovery and Characterization (ChromHMM) to obtain the most comprehensive overall assessment of epigenetic programming.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how to transform pluripotent stem cells into germ cells, specifically in the common marmoset, enhancing our understanding of germ cell development.
  • Researchers established methods to culture induced pluripotent stem cells (iPSCs) that can differentiate into primordial germ cell-like cells (PGCLCs), closely resembling the marmoset's natural germ cells.
  • The findings provide valuable insights for future research on human gametogenesis, potentially aiding in preclinical modeling of reproductive development.
View Article and Find Full Text PDF

In the developing mammalian testis, only a small proportion of fetal and neonatal prospermatogonia give rise to the foundational pool of spermatogonial stem cells (SSCs). Multiple lines of evidence have suggested the determination of which prospermatogonia give rise to foundational SSCs is not random, but is rather predetermined, such that foundational SSCs are ensured to develop advantageous characteristics such as enhanced genetic integrity. Here I suggest that differential epigenetic programing contributes to the molecular mechanisms by which an early subset of developing prospermatogonia becomes predetermined to form the foundational pool of SSCs.

View Article and Find Full Text PDF

Because epigenetics is a critical component for gene expression, the hypothesis was tested that DNA methylation alterations are dynamic and continually change throughout gametogenesis to generate the mature sperm. Developmental alterations and stage-specific DNA methylation during gametogenesis from primordial germ cells (PGCs) to mature sperm are investigated. Individual developmental stage germ cells were isolated and analyzed for differential DNA methylation regions (DMRs).

View Article and Find Full Text PDF

Translation of stem cell therapies to the clinic will be most successful following optimization of efficacy and safety in appropriate preclinical model systems. Among available models, nonhuman primates (NHPs) provide the most accurate recapitulation of human anatomy, physiology, genetics and epigenetics. Here, we show that baboon pluripotent cells (PSCs) recapitulate key molecular features of human PSCs with greater accuracy than that found in PSCs from non-primate species such as mice.

View Article and Find Full Text PDF

The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus).

View Article and Find Full Text PDF
Article Synopsis
  • * However, these studies did not include germ cells, which are critical for reproduction and evolution, leaving a gap in comprehensive epigenetic profiling data for these cell types.
  • * The authors emphasize the importance of reproductive biologists creating similar epigenomic datasets for male and female germ cells at various developmental stages and highlight their recent work in profiling mammalian spermatogonial stem cells and progenitor spermatogonia.
View Article and Find Full Text PDF

Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis.

View Article and Find Full Text PDF

Initiation of spermatogonial differentiation in the mouse testis begins with the response to retinoic acid (RA) characterized by activation of KIT and STRA8 expression. In the adult, spermatogonial differentiation is spatiotemporally coordinated by a pulse of RA every 8.6 days that is localized to stages VII-VIII of the seminiferous epithelial cycle.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) sustain spermatogenesis by balancing self-renewal and initiation of differentiation to produce progenitor spermatogonia committed to forming sperm. To define the regulatory logic among SSCs and progenitors, we performed single-cell RNA velocity analyses and validated results in vivo. A predominant quiescent SSC population spawns a small subset of cell-cycle-activated SSCs via mitogen-activated protein kinase (MAPK)/AKT signaling.

View Article and Find Full Text PDF

There is now considerable evidence indicating the potential for endocrine disrupting chemicals to alter the epigenome and for subsets of these epigenomic changes or "epimutations" to be heritably transmitted to offspring in subsequent generations. While there have been many studies indicating how exposure to endocrine disrupting chemicals can disrupt various organs associated with the body's endocrine systems, there is relatively limited information regarding the relative susceptibility of different specific organs, tissues, or cell types to endocrine disrupting chemical-induced epimutagenesis. Here we review available information about different organs, tissues, cell types, and/or cell lines which have been shown to be susceptible to specific endocrine disrupting chemical-induced epimutations.

View Article and Find Full Text PDF

Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, they induce DNA damage and are harmful to SSCs. However, little is known about how SSCs protect their genome during self-renewal. Here, we report that Ogg1 is essential for SSC protection against ROS.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) both self-renew and give rise to progenitors that initiate spermatogenic differentiation in the mammalian testis. Questions remain regarding the extent to which the SSC and progenitor states are functionally distinct. Here we provide the first multiparametric integrative analysis of mammalian germ cell epigenomes comparable with that done for >100 somatic cell types by the ENCODE Project.

View Article and Find Full Text PDF

Numerous environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Alterations in the germline epigenome are necessary to transmit transgenerational phenotypes. In previous studies, the pesticide DDT (dichlorodiphenyltrichloroethane) and the agricultural fungicide vinclozolin were shown to promote the transgenerational inheritance of sperm differential DNA methylation regions, non-coding RNAs and histone retention, which are termed epimutations.

View Article and Find Full Text PDF