Publications by authors named "McAlexander M"

Unlabelled: While autoantibodies in bullous pemphigoid (BP) are known to activate the innate immune response, their direct effect on keratinocytes, and the contribution of BP-IgG autoantibody-dependent keratinocyte responses to BP pathology is largely unknown. Herein, we performed multiplex immunoassays and bulk RNA-seq on primary keratinocytes treated with IgG from BP patients or controls. We identified a pro-inflammatory and proteolytic response with release of several cytokines (IL-6, IL-24, TGF-β1), chemokines (CXCL16, CTACK, MIP-3β, RANTES), C1s, DPP4, and MMP-9.

View Article and Find Full Text PDF

Background: Several techniques have been tailored to the quantification of microRNA expression, including hybridization arrays, quantitative PCR (qPCR), and high-throughput sequencing. Each of these has certain strengths and limitations depending both on the technology itself and the algorithm used to convert raw data into expression estimates. Reliable quantification of microRNA expression is challenging in part due to the relatively low abundance and short length of the miRNAs.

View Article and Find Full Text PDF

Background: Studies have demonstrated an association of the BRAF(V600E) mutation and microRNA (miR) expression with aggressive clinicopathologic features in papillary thyroid cancer (PTC). Analysis of BRAF(V600E) mutations with miR expression data may improve perioperative decision making for patients with PTC, specifically in identifying patients harboring central lymph node metastases (CLNM).

Methods: Between January 2012 and June 2013, 237 consecutive patients underwent total thyroidectomy and prophylactic central lymph node dissection (CLND) at four endocrine surgery centers.

View Article and Find Full Text PDF

Restriction of HIV-1 in myeloid-lineage cells is attributed in part to the nucleotidase activity of the SAM-domain and HD-domain containing protein (SAMHD1), which depletes free nucleotides, blocking reverse transcription. In the same cells, the Vpx protein of HIV-2 and most SIVs counteracts SAMHD1. Both Type I and II interferons may stimulate SAMHD1 transcription.

View Article and Find Full Text PDF

Pilakka-Kanthikeel et al. recently reported higher levels of the retroviral restriction factor sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) in astrocytes than in microglia, suggesting that SAMHD1 levels might explain in part the relatively refractory nature of astrocytes to retroviral replication. These findings are consistent with our studies of simian and human immunodeficiency virus infection of astrocytes and macrophages.

View Article and Find Full Text PDF

Background: Macaques are an excellent model for many human diseases, including reproductive diseases such as endometriosis. A long-recognized need for early biomarkers of endometriosis has not yet resulted in consensus. While biomarker studies have examined many bodily fluids and targets, cervicovaginal secretions have been relatively under-investigated.

View Article and Find Full Text PDF

We evaluated the role of vagal reflexes in a mouse model of allergen-induced airway hyperreactivity. Mice were actively sensitized to ovalbumin then exposed to the allergen via inhalation. Prior to ovalbumin inhalation, mice also received intratracheally-instilled particulate matter in order to boost the allergic response.

View Article and Find Full Text PDF

Introduction: Dietary flaxseed (FS) displays antioxidant and anti-inflammatory properties in preclinical models of lung disease including radiation-induced pneumonopathy, however the mechanisms of lung radioprotection are incompletely understood. MicroRNAs (miRNAs) are short oligonucleotides that act as important posttranscriptional regulators of diverse networks including inflammatory response networks. Responses of miRNA profiles to diet and radiation exposure have been reported, but the potential contribution of miRNAs to diet-related radioprotection has never been tested.

View Article and Find Full Text PDF

Prior studies have demonstrated that the ion channel transient receptor potential vanilloid 4 (TRPV4) is functionally expressed in airway smooth muscle cells and that TRPV4 single nucleotide polymorphisms are associated with airflow obstruction in patients with chronic obstructive pulmonary disease. We sought to use isometric tension measurements in ex vivo airways to determine whether short-term pharmacological activation of TRPV4 with the potent agonist GSK1016790 [N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide] would constrict human bronchial tissue. As predicted, transient receptor potential vanilloid 4 activation in the human airway produces contractions that are blocked by the nonselective transient receptor potential channel blocker ruthenium red.

View Article and Find Full Text PDF

Evidence that exogenous dietary miRNAs enter the bloodstream and tissues of ingesting animals has been accompanied by an indication that at least one plant miRNA, miR168, participates in "cross-kingdom" regulation of a mammalian transcript. If confirmed, these findings would support investigation of miRNA-based dietary interventions in disease. Here, blood was obtained pre- and post-prandially (1, 4, 12 h) from pigtailed macaques that received a miRNA-rich plant-based substance.

View Article and Find Full Text PDF

Allergic contact dermatitis is a common skin disease associated with inflammation and persistent pruritus. Transient receptor potential (TRP) ion channels in skin-innervating sensory neurons mediate acute inflammatory and pruritic responses following exogenous stimulation and may contribute to allergic responses. Genetic ablation or pharmacological inhibition of TRPA1, but not TRPV1, inhibited skin edema, keratinocyte hyperplasia, nerve growth, leukocyte infiltration, and antihistamine-resistant scratching behavior in mice exposed to the haptens, oxazolone and urushiol, the contact allergen of poison ivy.

View Article and Find Full Text PDF

Interest in extracellular RNA (exRNA) has intensified as evidence accumulates that these molecules may be useful as indicators of a wide variety of biological conditions. To establish specific exRNA molecules as clinically relevant biomarkers, reproducible recovery from biological samples and reliable measurements of the isolated RNA are paramount. Toward these ends, careful and rigorous comparisons of technical procedures are needed at all steps from sample handling to RNA isolation to RNA measurement protocols.

View Article and Find Full Text PDF

Preclinical drug development studies currently rely on costly and time-consuming animal testing because existing cell culture models fail to recapitulate complex, organ-level disease processes in humans. We provide the proof of principle for using a biomimetic microdevice that reconstitutes organ-level lung functions to create a human disease model-on-a-chip that mimics pulmonary edema. The microfluidic device, which reconstitutes the alveolar-capillary interface of the human lung, consists of channels lined by closely apposed layers of human pulmonary epithelial and endothelial cells that experience air and fluid flow, as well as cyclic mechanical strain to mimic normal breathing motions.

View Article and Find Full Text PDF

The ion channel TRPA1 is activated by a wide variety of noxious stimuli, such as pollutants, products of oxidative tissue damage, and pungent natural products. Many TRPA1 activators are reactive electrophiles that form Michael adducts with cysteine and lysine residues of TRPA1's intracellular N-terminus. Curcumin, the active principle of turmeric root (Curcuma longa), can also form Michael adducts.

View Article and Find Full Text PDF

Transient receptor potential (TRP) cation channels have been among the most aggressively pursued drug targets over the past few years. Although the initial focus of research was on TRP channels that are expressed by nociceptors, there has been an upsurge in the amount of research that implicates TRP channels in other areas of physiology and pathophysiology, including the skin, bladder and pulmonary systems. In addition, mutations in genes encoding TRP channels are the cause of several inherited diseases that affect a variety of systems including the renal, skeletal and nervous system.

View Article and Find Full Text PDF

The Transient Receptor Potential channels constitute a superfamily of ion channels that is unmatched in its functional diversity. Recent research employing pharmacological and genetic methods has demonstrated that these channels are widely distributed within the respiratory tract, where they may mechanistically link noxious irritant exposures and inflammation to heightened airway reflex sensitivity, pathological remodeling and airflow limitation. Herein, we summarize the state of the art in this rapidly expanding area, emphasizing the known roles of Transient Receptor Potential channels in airway sensory nerves in addition to highlighting their roles in non-excitable cells.

View Article and Find Full Text PDF

Cough occurs as a result of the activation of specific airway sensory nerves. The mechanisms by which tussive stimuli activate these sensory nerves are starting to be understood and suggest that TRPA1 channels are heavily involved. TRPA1 channels are nociceptor-specific ion channels that are gated by a wide range of exogenous irritants and endogenously-produced inflammatory mediators, suggesting that the blockade of TRPA1 represents a novel therapy for the treatment of cough in humans.

View Article and Find Full Text PDF

Toluene diisocyanate (TDI), a reactive, hazardous irritant, causes respiratory symptoms such as cough, rhinitis, dyspnea, and chest tightness in exposed workers. Although previous animal studies have shown that TDI causes respiratory reflexes that are abolished by desensitization of capsaicin-sensitive sensory nerves, the specific molecular identity of the transducer(s) responsible for sensing this noxious stimulus has, to date, remained elusive. Recent studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1), an ion channel largely restricted to a subset of capsaicin-sensitive sensory nerves, functions as a transducer capable of initiating reflex responses to many reactive chemical stimuli.

View Article and Find Full Text PDF

Cough plays a vital role in protecting the lower airways from inhaled irritants, pollutants, and infectious agents. The cough reflex exhibits remarkable plasticity, such that in the context of infectious or inflammatory respiratory diseases such as asthma, chronic bronchitis, and idiopathic pulmonary fibrosis the cough reflex can become dysregulated, leading to a chronic cough. A chronic, nonproductive (dry) cough can rob sufferers of quality of life.

View Article and Find Full Text PDF

Transient receptor potential (TRP) A1 channels are cation channels found preferentially on nociceptive sensory neurones, including capsaicin-sensitive TRPV1-expressing vagal bronchopulmonary C-fibres, and are activated by electrophilic compounds such as mustard oil and cinnamaldehyde. Oxidative stress, a pathological feature of many respiratory diseases, causes the endogenous formation of a number of reactive electrophilic alkenals via lipid peroxidation. One such alkenal, 4-hydroxynonenal (4HNE), activates TRPA1 in cultured sensory neurones.

View Article and Find Full Text PDF

Inflammation contributes to pain hypersensitivity through multiple mechanisms. Among the most well characterized of these is the sensitization of primary nociceptive neurons by arachidonic acid metabolites such as prostaglandins through G protein-coupled receptors. However, in light of the recent discovery that the nociceptor-specific ion channel transient receptor potential A1 (TRPA1) can be activated by exogenous electrophilic irritants through direct covalent modification, we reasoned that electrophilic carbon-containing A- and J-series prostaglandins, metabolites of prostaglandins (PG) E(2) and D(2), respectively, would excite nociceptive neurons through direct activation of TRPA1.

View Article and Find Full Text PDF

The goal of this study was to examine arachidonic acid (AA) metabolism by murine bone marrow-derived mast cells (BMMC) during apoptosis induced by cytokine depletion. BMMC deprived of cytokines for 12-48 h displayed apoptotic characteristics. During apoptosis, levels of AA, but not other unsaturated fatty acids, correlated with the percentage of apoptotic cells.

View Article and Find Full Text PDF

Electrophysiological studies of vagal sensory nerves with cell bodies in the nodose ganglion and mechanically sensitive receptive fields in the guinea-pig trachea/bronchus, were performed. Exposure of the mechanically sensitive receptive fields to 4-aminopyridine (100 microM-1 mM) caused pronounced action potential discharge in all fibres studied. Action potential generation was also produced by alpha-dendrotoxin, and in a subset of fibres, by barium.

View Article and Find Full Text PDF