Heliyon
May 2024
We investigated 1012 molecules from natural products previously isolated from the South African biodiversity (SANCDB, https://sancdb.rubi.ru.
View Article and Find Full Text PDFThe reaction mechanisms of the decomposition of glycerol carbonate have been investigated at the density functional theory level within the bond evolution theory. The four reaction pathways yield to 3-hydroxypropanal (TS1), glycidol (TS2a and TS2b), and 4-methylene-1,3-dioxolan-2-one (TS3). The study reveals non-concerted processes with the same number (four) of structural stability domains for each reaction pathway.
View Article and Find Full Text PDFJ Comput Chem
May 2022
We investigated the flow of electron density along the cyclocondensation reaction between ethyl acetate 2-oxo-2-(4-oxo-4H-pyrido[1.2-a]pyrimidin-3-yl) polyazaheterocycle (1) and ethylenediamine (2) at the ωB97XD/6-311++G(d,p)computational method within of bond evolution theory (BET). The exploration of potential energy surface shows that this reaction has three channels (1-3) with the formation of product 3 via channel-2 (the most favorable one) as the main product and this is in good agreement with experimental observations.
View Article and Find Full Text PDFACS Omega
September 2020
This study is focused on describing the molecular mechanism beyond the molecular picture provided by the evolution of molecular orbitals, valence bond structures along the reaction progress, or conceptual density functional theory. Using bonding evolution theory (BET) analysis, we have deciphered the mechanism of the 1,3-dipolar rearrangement between acetonitrile oxide and (1,2,4)-2-cyano-7-oxabicyclo[2.2.
View Article and Find Full Text PDFJ Mol Graph Model
May 2020