Environ Sci Technol
October 2024
Galvanic corrosion of lead-tin solder in copper plumbing can be a major contributor to water lead contamination. Here, we report the electrochemical reversal of the copper-solder galvanic couple, in which the normally anodic solder becomes cathodic to copper via a reaction with free chlorine. This reversal occurred after a few months of exposure to continuously circulating water with relatively low pH and low alkalinity, causing dramatically decreased lead release and the formation of a Pb(IV) scale.
View Article and Find Full Text PDFBordetella's genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an in vitro affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors.
View Article and Find Full Text PDFWe present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the ππ^{*} Dirac cones at the K[over ¯] point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.
View Article and Find Full Text PDFBackground: The purpose of this multicenter study was to retrospectively investigate the prognostic significance of the tumor microenvironment, in relation to survival in a large cohort of patients with laryngeal squamous cell carcinoma (LSCC), using the method proposed by the International TILs Working Group in breast cancer.
Methods: All consecutive patients with biopsy-proven LSCC who underwent total laryngectomy (TL) between January 2014 and January 2023 were retrospectively included in the study. A retrospective review of medical records including surgical, pathological and follow-up reports was performed.
This study aims to retrospectively investigate the prognostic significance of the tumor microenvironment, with a focus on TILs (tumor-infiltrating lymphocytes), in relation to survival in a large cohort of patients with parotid gland cancer, and it uses the method proposed by the International TILs Working Group in breast cancer. We included a cohort of consecutive patients with biopsy-proven parotid cancer who underwent surgery between January 2010 and September 2023. A retrospective review of medical records, including surgical, pathological and follow-up reports, was performed.
View Article and Find Full Text PDFMetallic ferromagnetic transition metal dichalcogenides have emerged as important building blocks for scalable magnetic and memory applications. Downscaling such systems to the ultrathin limit is critical to integrate them into technology. Here, we achieved layer-by-layer control over the transition metal dichalcogenide CrTe by using pulsed laser deposition, and we uncovered the minimum critical thickness above which room-temperature magnetic order is maintained.
View Article and Find Full Text PDFObjectives: Since its introduction as a clinical technique, robotic surgery has been extended to different fields of surgery. However, the indications as well as the number of robotic procedures varied in different institutions. The aim of this investigation was to evaluate the current use of robotic surgery in general and digestive surgery in Switzerland.
View Article and Find Full Text PDFSpin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions.
View Article and Find Full Text PDFThe relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally.
View Article and Find Full Text PDFPurpose: To evaluate the ability of preoperative MRI-based measurements to predict the pathological T (pT) stage and cervical lymph node metastasis (CLNM) via machine learning (ML)-driven models trained in oral tongue squamous cell carcinoma (OTSCC).
Materials And Methods: 108 patients with a new diagnosis of OTSCC were enrolled. The preoperative MRI study included post-contrast high-resolution T1-weighted images acquired in all patients.
Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system CoSnS and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of CoSnS directly, by linking it to its real space surface distribution.
View Article and Find Full Text PDFUnderstanding the collective behavior of the quasiparticles in solid-state systems underpins the field of nonvolatile electronics, including the opportunity to control many-body effects for well-desired physical phenomena and their applications. Hexagonal boron nitride (hBN) is a wide-energy-bandgap semiconductor, showing immense potential as a platform for low-dimensional device heterostructures. It is an inert dielectric used for gated devices, having a negligible orbital hybridization when placed in contact with other systems.
View Article and Find Full Text PDFWO is a 5d compound that undergoes several structural transitions in its bulk form. Its versatility is well-documented, with a wide range of applications, such as flexopiezoelectricity, electrochromism, gating-induced phase transitions, and its ability to improve the performance of Li-based batteries. The synthesis of WO thin films holds promise in stabilizing electronic phases for practical applications.
View Article and Find Full Text PDFPolarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VIvan der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and x-ray magnetic circular dichroism spectra acquired at the VL2,3edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VIunit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the Vion due to the unbalanced hybridization between the vanadium and the ligand states.
View Article and Find Full Text PDFHere, we present an integrated ultra-high-vacuum (UHV) apparatus for the growth of complex materials and heterostructures. The specific growth technique is the Pulsed Laser Deposition (PLD) by means of a dual-laser source based on an excimer KrF ultraviolet and solid-state Nd:YAG infra-red lasers. By taking advantage of the two laser sources-both lasers can be independently used within the deposition chambers-a large number of different materials-ranging from oxides to metals, to selenides, and others-can be successfully grown in the form of thin films and heterostructures.
View Article and Find Full Text PDFNonmagnetic chiral crystals are a new class of systems hosting Kramers-Weyl Fermions, arising from the combination of structural chirality, spin-orbit coupling (SOC), and time-reversal symmetry. These materials exhibit nontrivial Fermi surfaces with SOC-induced Chern gaps over a wide energy range, leading to exotic transport and optical properties. In this study, we investigate the electronic structure and transport properties of CdAs, a newly reported chiral material.
View Article and Find Full Text PDFIn recent years, the correlation between the existence of topological electronic states in materials and their catalytic activity has gained increasing attention, due to the exceptional electron conductivity and charge carrier mobility exhibited by quantum materials. However, the physicochemical mechanisms ruling catalysis with quantum materials are not fully understood. Here, we investigate the chemical reactivity, ambient stability, and catalytic activity of the topological nodal-line semimetal AuSn.
View Article and Find Full Text PDFWe report on the growth and characterization of epitaxial YBa[Formula: see text]Cu[Formula: see text]O[Formula: see text] (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y[Formula: see text]Al[Formula: see text]O[Formula: see text] (Nd:YAG) pulsed laser source ([Formula: see text] = 1064 nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature [Formula: see text] 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d.
View Article and Find Full Text PDFBackground And Purpose: To answer an important question regarding the long-term morbidity of two oncological equivalent treatment for oropharyngeal squamous cell carcinoma (OPSCC), namely a comparison of swallowing function results between patients treated with trans-oral robotic surgery (TORS) versus patients treated with radiotherapy (RT).
Materials And Methods: Studies included patients with OPSCC treated with TORS or RT. Articles reporting complete data on MD Anderson Dysphagia Inventory (MDADI) and comparing the two treatments (TORS vs RT) were included in the meta-analysis.
Magnetic materials exhibiting topological Dirac fermions are attracting significant attention for their promising technological potential in spintronics. In these systems, the combined effect of the spin-orbit coupling and magnetic order enables the realization of novel topological phases with exotic transport properties, including the anomalous Hall effect and magneto-chiral phenomena. Herein, we report experimental signature of topological Dirac antiferromagnetism in TaCoTe via angle-resolved photoelectron spectroscopy and first-principles density functional theory calculations.
View Article and Find Full Text PDFHistorically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms.
View Article and Find Full Text PDFThe first aim was to define the oncologic outcomes of open partial laryngectomy (OPL) in naïve pT3 laryngeal cancer. The second aim was to analyze the outcomes after OPL versus total laryngectomy (TL). A literature search was conducted in three databases (MEDLINE, EMBASE, and Cochrane Library) until January 2022.
View Article and Find Full Text PDFNat Struct Mol Biol
August 2022
Prion infections cause conformational changes of the cellular prion protein (PrP) and lead to progressive neurological impairment. Here we show that toxic, prion-mimetic ligands induce an intramolecular R208-H140 hydrogen bond ('H-latch'), altering the flexibility of the α2-α3 and β2-α2 loops of PrP. Expression of a PrP mutant mimicking the H-latch was constitutively toxic, whereas a PrP mutant unable to form the H-latch conferred resistance to prion infection.
View Article and Find Full Text PDF