Publications by authors named "Mazzen Black"

The ProQ/FinO family of RNA binding proteins mediate sRNA-directed gene regulation throughout gram-negative bacteria. Here, we investigate the structural basis for RNA recognition by ProQ/FinO proteins, through the crystal structure of the ProQ/FinO domain of the Legionella pneumophila DNA uptake regulator, RocC, bound to the transcriptional terminator of its primary partner, the sRNA RocR. The structure reveals specific recognition of the 3' nucleotide of the terminator by a conserved pocket involving a β-turn-α-helix motif, while the hairpin portion of the terminator is recognized by a conserved α-helical N-cap motif.

View Article and Find Full Text PDF

Islet transplantation is being considered as an alternative treatment for type 1 diabetes. Despite recent progress, transplant recipients continue to experience progressive loss of insulin independence. Cyanidin-3-O-Glucoside (C3G) has shown to be protective against damage that may lead to post-transplant islet loss.

View Article and Find Full Text PDF

Background: Neonatal pigs have the potential to provide an inexhaustible source of islets for the treatment of type 1 diabetes. However, the immunological barriers to islet xenotransplantation still need to be overcome. A better understanding of the xeno-specific immune responses that are involved in neonatal porcine islet (NPI) xenotransplant rejection will help to facilitate the identification of new targets for anti-rejection therapies, and thus enable more specific targeting of the immune cells and molecules involved.

View Article and Find Full Text PDF

Oxidative stress is a major cause of islet injury and dysfunction during isolation and transplantation procedures. Cyanidin-3-O-glucoside (C3G), which is present in various fruits and vegetables especially in Chinese bayberry, shows a potent antioxidant property. In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (HO)-induced injury and promote the function of NPI in diabetic mice.

View Article and Find Full Text PDF