Publications by authors named "Mazurchuk R"

Article Synopsis
  • Innovation in medical imaging using AI and machine learning requires thorough data collection and algorithm improvements, along with careful evaluation of factors like bias and trustworthiness.
  • Successfully integrating AI/ML into clinical settings is challenging and hinges on addressing issues in model design, development, regulatory compliance, and stakeholder collaboration.
  • Tackling these complexities is essential not only for overcoming current obstacles but also for unlocking new opportunities in the field of radiology.
View Article and Find Full Text PDF

The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples.

View Article and Find Full Text PDF

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep learning (DL) techniques, have enabled broad application of these methods in health care. The promise of the DL approach has spurred further interest in computer-aided diagnosis (CAD) development and applications using both "traditional" machine learning methods and newer DL-based methods. We use the term CAD-AI to refer to this expanded clinical decision support environment that uses traditional and DL-based AI methods.

View Article and Find Full Text PDF
Article Synopsis
  • - The National Cancer Institute held a think-tank meeting to gather expert insights on using multiomic single-cell analyses, particularly single-cell proteomics, to create advanced cancer biomarkers for risk assessment, early detection, diagnosis, and treatment targets.
  • - The discussion covered challenges in single-cell analysis, including methods for analyzing cells from different tissue states, detecting secreted molecules, identifying new cell types, and integrating multiple types of data effectively.
  • - Experts also explored technical improvements needed for single-cell proteomics, including enhancing measurement sensitivity, achieving adequate data coverage, and effectively visualizing complex data sets to better understand intercellular communication in cancerous tissues.
View Article and Find Full Text PDF

Many cancers evolve from benign precancerous lesions and have a natural history of progression that provides a window of opportunity for intervention. The biological mechanisms underlying this evolutionary trajectory can only be truly understood through an extensive characterization of the molecular, cellular, and non-cellular properties of premalignant and malignant tumors, and must also recognize how the microenvironment (stromal cells, immune cells, and other types of cells) contributes to this evolution. We describe here the need to develop comprehensive molecular and cellular atlases for organ-specific premalignant lesions while capturing the spatial, structural, and functional changes over time that will provide a greater understanding of how premalignancy transitions to malignancy.

View Article and Find Full Text PDF

Reproduced from https://visualsonline.cancer.gov/details.

View Article and Find Full Text PDF

Purpose: Tumor vascular normalization by antiangiogenic agents may increase tumor perfusion but reestablish vascular barrier properties in CNS tumors. Vascular priming via nanoparticulate carriers represents a mechanistically distinct alternative. This study investigated mechanisms by which sterically-stabilized liposomal doxorubicin (SSL-DXR) modulates tumor vascular properties.

View Article and Find Full Text PDF

To develop novel bifunctional agents for tumor imaging (MR) and photodynamic therapy (PDT), certain tumor-avid photosensitizers derived from chlorophyll-a were conjugated with variable number of Gd(III)aminobenzyl DTPA moieties. All the conjugates containing three or six gadolinium units showed significant T(1) and T(2) relaxivities. However, as a bifunctional agent, the 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) containing 3Gd(III) aminophenyl DTPA was most promising with possible applications in tumor-imaging and PDT.

View Article and Find Full Text PDF

Conjugates of 3-(1'-hexyloxyethyl)-3-devinyl pyropheophorbide-a (HPPH) with multiple Gd(III)aminobenzyl diethylenetriamine pentacetic acid (ADTPA) moieties were evaluated for tumor imaging and photodynamic therapy (PDT). In vivo studies performed in both mice and rat tumor models resulted in a significant MR signal enhancement of tumors relative to surrounding tissues at 24 h postinjection. The water-soluble (pH: 7.

View Article and Find Full Text PDF

Nano- and microparticulate carriers can exert a beneficial impact on the pharmacodynamics of anticancer agents. To investigate the relationships between carrier and antitumor pharmacodynamics, paclitaxel incorporated in liposomes (L-pac) was compared with the clinical standard formulated in Cremophor-EL/ethanol (Cre-pac) in a rat model of advanced primary brain cancer. Three maximum-tolerated-dose regimens given by intravenous administration were investigated: 50 mg/kg on day 8 (d8) after implantation of 9L gliosarcoma tumors; 40 mg/kg on d8 and d15; 20 mg/kg on d8, d11, and d15.

View Article and Find Full Text PDF

A mutation in the Vps33a gene causes Hermansky-Pudlak Syndrome (HPS)-like-symptoms in the buff (bf) mouse mutant. The encoded product, Vps33a, is a member of the Sec1 and Class C multi-protein complex that regulates vesicle trafficking to specialized lysosome-related organelles. As Sec1 signaling pathways have been implicated in pre-synaptic function, we examined brain size, cerebellar cell number and the behavioral phenotype of bf mutants.

View Article and Find Full Text PDF

Although much is known about the perceptual characteristics of tinnitus, its neural origins remain poorly understood. We investigated the pattern of neural activation in central auditory structures using positron emission tomography (PET) imaging in a rat model of salicylate-induced tinnitus. Awake rats were injected with the metabolic tracer, fluorine-18 fluorodeoxyglucose (FDG), once in a quiet state (baseline) and once during salicylate-induced tinnitus.

View Article and Find Full Text PDF

Purpose: The rate of energy delivery is a principal factor determining the biological consequences of photodynamic therapy (PDT). In contrast to conventional high-irradiance treatments, recent preclinical and clinical studies have focused on low-irradiance schemes. The objective of this study was to investigate the relationship between irradiance, photosensitizer dose, and PDT dose with regard to treatment outcome and tumor oxygenation in a rat tumor model.

View Article and Find Full Text PDF

Background: Colorectal cancer metastases result in a significant number of cancer related deaths. The molecular mechanisms underlying this complex, multi-step pathway are yet to be completely elucidated. In the absence of any transgenic models of colon cancer metastases, an in vivo model system that fulfills the rate limiting steps of metastasis (local invasion and distant colony formation) is needed.

View Article and Find Full Text PDF

The focus of this report was to test the performance of a novel piezoelectric motor under high magnetic field strength conditions and to investigate its potential applications in small animal magnetic resonance imaging (MRI). The device is made entirely of nonferrous materials and consists of four piezoelectric ceramic plates connected to a threaded metal tube through which a screw migrates. Ultrasonic vibrations of the threads inherent to the tube result in rotational and translational motion of the screw.

View Article and Find Full Text PDF

The acute effects of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) were investigated in vivo using intravital microscopy (IVM) and magnetic resonance imaging (MRI). Changes in vascular permeability and blood flow of syngeneic CT-26 murine colon adenocarcinomas were assessed at 4 and 24 hours after DMXAA treatment (30 mg/kg, i.p.

View Article and Find Full Text PDF

Pyruvate dehydrogenase complex (PDC) deficiency is an inborn metabolic disorder that causes neurological abnormalities. In this report, a murine model of PDC deficiency was analyzed using histology, magnetic resonance (MR) imaging and MR spectroscopy (MRS) and the results compared to PDC-deficient female patients. Histological analysis of brains from PDC-deficient mice revealed defects in neuronal cytoarchitecture in grey matter and reduced size of white matter structures.

View Article and Find Full Text PDF

The acetylating enzyme, spermidine/spermine N1-acetyltransferase, participates in polyamine homeostasis by regulating polyamine export and catabolism. Previously, we reported that overexpression of the enzyme in cultured tumor cells and mice activates metabolic flux through the polyamine pathway and depletes the N1-acetyltransferase coenzyme and fatty acid precursor, acetyl-CoA. Here, we investigate this possibility in spermidine/spermine N1-acetyltransferase transgenic mice in which the enzyme is systemically overexpressed and in spermidine/spermine N1-acetyltransferase knock-out mice.

View Article and Find Full Text PDF

Head and neck squamous cell carcinomas (HNSCC) constitute a majority of the tumors of the upper aerodigestive tract and continue to present a significant therapeutic challenge. To explore the potential of vascular-targeted therapy in HNSCC, we investigated the antivascular, antitumor activity of the potent vascular-disrupting agent (VDA) 5,6-dimethylxanthenone-4-acetic acid (DMXAA) against two HNSCC xenografts with markedly different morphologic and vascular characteristics. Athymic nude mice bearing subcutaneous FaDu (human pharyngeal squamous cell carcinoma) and A253 (human submaxillary gland epidermoid carcinoma) tumors were administered a single dose of DMXAA (30 mg/kg, i.

View Article and Find Full Text PDF

One of the greatest challenges in developing therapeutic regimens is the inability to rapidly and objectively assess tumor response due to treatment. Moreover, tumor response to therapeutic intervention in many cases is transient, and progressive alterations within the tumor may mask the effectiveness of an initially successful therapy. The ability to detect these changes as they occur would allow timely initiation of alternative approaches, maximizing therapeutic outcome.

View Article and Find Full Text PDF

We have developed genetically fluorescent orthotopic models of human pancreatic cancer. In these models, noninvasive fluorescent protein imaging (FPI) of internal primary tumors and metastatic deposits has been carried out. Whole-body tumor images are easily and inexpensively obtained using FPI, permitting both detection and quantification of tumor load.

View Article and Find Full Text PDF

Purpose: Photodynamic therapy (PDT) is a clinically approved treatment for a variety of solid malignancies. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a potent vascular targeting agent that has been shown to be effective against a variety of experimental rodent tumors and xenografts and is currently undergoing clinical evaluation. We have previously reported that the activity of PDT against transplanted mouse tumors is selectively enhanced by DMXAA.

View Article and Find Full Text PDF

The breadth and substance of anatomic (structural) and novel physiological (functional) imaging methods to noninvasively monitor and assess anticancer therapies continues to grow. Current techniques span several imaging disciplines including magnetic resonance (MR) imaging, positron emission tomography (PET), computed tomography (CT), ultrasound (US), and optical-based methods using fluorescence and bioluminescence techniques. These methodologies applied in the clinic and/or in animal models offer unique insights into disease processes.

View Article and Find Full Text PDF

A clinically relevant photosensitizer, 3-devinyl-3-(1-hexyloxyethyl)pyropheophorbide-a (HPPH, a chlorophyll-a derivative), was conjugated with Gd(III)-aminobenzyl-diethylenetriaminepentaacetic acid (DTPA), an experimental magnetic resonance (MR) imaging agent. In vivo reflectance spectroscopy confirmed tumor uptake of HPPH-aminobenzyl-Gd(III)-DTPA conjugate was higher than free HPPH administered intraveneously (iv) to C3H mice with subcutaneously (sc) implanted radiation-induced fibrosarcoma (RIF) tumor cells. In other experiments, Sprague-Dawley (SD) rats with sc implanted Ward Colon Carcinoma cells yielded markedly increased MR signal intensities from tumor regions-of-interest (ROIs) 24 h post-iv injection of HPPH-aminobenzyl-Gd(III)-DTPA conjugate as compared to unconjugated HPPH.

View Article and Find Full Text PDF

Genetically engineered mice have been generated to model a variety of neurological disorders. The chakragati (ckr) mouse is beginning to provide valuable insights into the structural brain changes underlying certain manifestations of schizophrenia. For instance, these mice show enlargement of the lateral ventricles, an abnormality frequently reported as a structural aberration in the schizophrenic brain.

View Article and Find Full Text PDF