Publications by authors named "Mazodier P"

Unlabelled: Protein turnover is essential in all living organisms for the maintenance of normal cell physiology. In eukaryotes, most cellular protein turnover involves the ubiquitin-proteasome pathway, in which proteins tagged with ubiquitin are targeted to the proteasome for degradation. In contrast, most bacteria lack a proteasome but harbor proteases for protein turnover.

View Article and Find Full Text PDF

Background: AdpA is a key transcriptional regulator involved in the complex growth cycle of Streptomyces. Streptomyces are Gram-positive bacteria well-known for their production of secondary metabolites and antibiotics. Most work on AdpA has been in S.

View Article and Find Full Text PDF

Insertion of an apramycin resistance cassette in the clpP1clpP2 operon (encoding the ClpP1 and ClpP2 peptidase subunits) affects morphological and physiological differentiation of Streptomyces lividans. Another key factor controlling Streptomyces differentiation is the pleiotropic transcriptional regulator AdpA. We have identified a spontaneous missense mutation (-1 frameshift) in the adpA (bldH) open reading frame in a clpP1clpP2 mutant that led to the synthesis of a non-functional AdpA protein.

View Article and Find Full Text PDF

ADEP, a molecule of the acyl depsipeptide family, has an antibiotic activity with a unique mode of action. ADEP binding to the ubiquitous protease ClpP alters the structure of the enzyme. Access of protein to the ClpP proteolytic chamber is therefore facilitated and its cohort regulatory ATPases (ClpA, ClpC, ClpX) are not required.

View Article and Find Full Text PDF

To eliminate unavoidable contamination of purified recombinant proteins by DnaK, we present a unique approach employing a BL21(DE3) DeltadnaK strain of Escherichia coli. Selected representative purified proteins remained soluble, correctly assembled, and active. This finding establishes DnaK dispensability for protein production in BL21(DE3), which is void of Lon protease, key to eliminating unfolded proteins.

View Article and Find Full Text PDF

It has been shown previously that expression of the Streptomyces lividans clpP1P2 operon, encoding proteolytic subunits of the Clp complex, the clpC1 gene, encoding the ATPase subunit, and the lon gene, encoding another ATP-dependent protease, are all activated by ClgR. The ClgR regulon also includes the clgR gene itself. It is shown here that the degradation of ClgR and Lon is ClpP1/P2-dependent and that the two C-terminal alanines of these new substrates are involved in their stability.

View Article and Find Full Text PDF

ssrA genes encoding tmRNA with transfer and messenger RNA functions are ubiquitous in bacteria. In a process called trans-translation, tmRNA enters a stalled ribosome and allows release of the original mRNA, then tmRNA becomes the template for translation of a short tag that signals for proteolytic degradation. We provide here the first evidences that the tmRNA tagging system (ssrA and cohort smpB) is active in Streptomyces.

View Article and Find Full Text PDF

The clp genes encoding the Clp proteolytic complex are widespread among living organisms. Five clpP genes are present in Streptomyces. Among them, the clpP1 clpP2 operon has been shown to be involved in the Streptomyces growth cycle, as a mutation blocked differentiation at the substrate mycelium step.

View Article and Find Full Text PDF

ATP-dependent proteases of the ClpP type are widespread in eubacteria. These proteolytic complexes are composed of a proteolytic subunit and an ATPase subunit. They are involved in the degradation of denatured proteins, but also play a role in specific regulatory pathways.

View Article and Find Full Text PDF

Members of a family of ATP-dependent proteases related to Lon from Escherichia coli are present in most prokaryotes and eukaryotes. These proteases are generally reported to be heat induced, and various regulatory systems have been described. The authors cloned and disrupted the lon gene and studied the regulation of its expression in Streptomyces lividans.

View Article and Find Full Text PDF

Five clpP genes have been identified in Streptomyces coelicolor. The clpP1 and clpP2 genes form one operon, the clpP3 and clpP4 genes form another, and clpP5 is monocistronic. Previous studies in Streptomyces lividans have shown that the first operon (clpP1 clpP2) is required for a normal cell cycle.

View Article and Find Full Text PDF

All organisms respond to a sudden increase in temperature by inducing the synthesis of a set of proteins called heat shock proteins (HSPs). Although the induction of HSPs is a universal response, a diversity of mechanisms control HSP synthesis in different organisms. In Streptomyces, the synthesis of major HSPs, such as the widespread molecular chaperones DnaK, ClpB, GroEL and HSP18, is negatively controlled at the transcriptional level by at least three different repressors.

View Article and Find Full Text PDF

The clpP genes are widespread among living organisms and encode the proteolytic subunit of the Clp ATP-dependent protease. These genes are present in a single copy in most eubacteria. However, five clpP genes were identified in Streptomyces coelicolor.

View Article and Find Full Text PDF

Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance.

View Article and Find Full Text PDF

In Streptomyces albus, Hsp18, a protein belonging to the family of small heat-shock proteins, can be detected only at high temperature. Disruption of orfY, located upstream and in the opposite orientation to hsp18, resulted in an elevated level of hsp18 mRNA at low temperature. Genetic and biochemical experiments indicated that the product of orfY, now called RheA (Repressor of hsp eighteen), directly represses hsp18.

View Article and Find Full Text PDF

The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes.

View Article and Find Full Text PDF

The clpB gene of Streptomyces albus was cloned by polymerase chain reaction (PCR) using degenerate oligonucleotides. Transcriptional analysis showed that the clpB gene was heat induced. Primer extension identified a transcription start site preceded by typical vegetative -10 and -35 hexamer sequences.

View Article and Find Full Text PDF

Expression of the principal chaperones of the heat shock stimulon of Streptomyces albus G are under the negative control of different repressors. The dnaK operon is regulated by hspR, the last gene of the operon (dnaK-grpE-dnaJ-hspR). hsp18, encoding a member of the small heat shock protein family, is regulated by orfY, which is in the opposite orientation upstream of hsp18.

View Article and Find Full Text PDF

hspR is the distal gene of the Streptomyces albus dnaK operon. It encodes a protein similar to GlnR, the repressor of the Bacillus subtilis glutamine synthetase gene. Transcriptional analysis showed that disruption of hspR led to constitutive high-level expression of the dnaK operon, SDS-PAGE analysis revealed over-production and accumulation of the chaperone DnaK at low temperature HSP94, a heat-inducible protein cross-reacting with anti-CipB antibodies, was also shown to be constitutively overexpressed at low temperature in the hspR mutant.

View Article and Find Full Text PDF

In Streptomyces albus G, HSP18, a protein belonging to the small heat shock protein family, could be detected only at high temperature. The nucleotide sequence of the DNA region upstream from hsp18 contains an open reading frame (orfY) which is in the opposite orientation and 150 bp upstream. This open reading frame encodes a basic protein of 225 amino acids showing no significant similarity to any proteins found in data banks.

View Article and Find Full Text PDF

We describe the clinical presentation and outcome in a series of eight patients with systemic necrotizing vasculitis and severe alpha1-antitrypsin (AAT) deficiency followed up at three Swedish hospitals during 1968-92. We also review six other cases reported in the literature during the same period. Diagnosis of severe AAT deficiency was based on the presence of the PiZZ phenotype, or low plasma total trypsin inhibitory capacity, or a low plasma AAT concentration (10-40% of the normal mean value) and presence of the PiSZ or PiFZ phenotype.

View Article and Find Full Text PDF

In Streptomyces albus during the heat shock response, a small heat shock protein of 18 kDa is dramatically induced. This protein was purified, and internal sequences revealed that S. albus HSP18 showed a marked homology with proteins belonging to the family of small heat shock proteins.

View Article and Find Full Text PDF

In Streptomyces coelicolor A3(2), synthesis of the groES, groES-groEL1 and groEL2 transcripts is induced either by heat shock or by undefined physiological stress signals present at a certain stage of growth. Under all conditions tested, transcription of groES and groES-groEL1 originated from a unique start site upstream of groES, whereas transcription of groEL2 originated from a unique site upstream of groEL2. RNA polymerase isolated either from heat-shocked or control mycelia allowed in vitro transcription from the P1 promoter of groES/EL1 and the P2 promoter of groEL2.

View Article and Find Full Text PDF

Two Streptomyces coelicolor A3(2) groEL-like genes, groEL1 and groEL2, were cloned and characterized. Pulsed-field-gel electrophoresis located these genes, which were not adjacent, in the same segment of the chromosome. Nucleotide sequence analysis revealed that groEL1, but not groEL2, was preceded by a groES-like gene.

View Article and Find Full Text PDF