Waste peels are considered an environmental burden and typically disposed in landfills. The aim of this study was to investigate the effects of various solvents on the luminescence properties of carbon quantum dots (CQDs). Watermelon peels were recycled and reuse as precursors for the synthesis of biomass CQDs via a green carbonization method.
View Article and Find Full Text PDFThe temperature dependence of photoluminescence (PL) emission is a valuable tool for investigating carrier localization, recombination, and carrier-phonon interactions. Herein, electron-phonon couplings in lead sulfide (PbS) quantum dots (QDs) and lead sulfide/manganese tellurite (PbS/MnTe) QDs is reported. The effect of temperature on the PL emission of PbS and PbS/MnTe was explored within a temperature range of 10 to 300 K.
View Article and Find Full Text PDFA facile electrochemical sandwich immunosensor for the detection of a breast cancer biomarker, the human epidermal growth factor receptor 2 (HER2), was designed, using lead sulfide quantum dots-conjugated secondary HER2 antibody (Ab2-PbS QDs) as a label. Using Ab2-PbS QDs in the development of electrochemical immunoassays leads to many advantages such as straightforward synthesis and well-defined stripping signal of Pb(II) through acid dissolution, which in turn yields better sensing performance for the sandwiched immunosensor. In the bioconjugation of PbS QDs, the available amine and hydroxyl groups from secondary anti-HER2 and capped PbS QDs were bound covalently together via carbonyldiimidazole (CDI) acting as a linker.
View Article and Find Full Text PDFA facile thermal-treatment route was successfully used to synthesize ZnO nanosheets. Morphological, structural, and optical properties of obtained nanoparticles at different calcination temperatures were studied using various techniques. The FTIR, XRD, EDX, SEM and TEM images confirmed the formation of ZnO nanosheets through calcination in the temperature between 500 to 650 °C.
View Article and Find Full Text PDF