Publications by authors named "Mazina O"

CO methanation was studied in the presence of nickel catalysts obtained by the solid-state combustion method. Complexes with a varying number of ethylenediamine molecules in the coordination sphere of nickel were chosen as the precursors of the active component of the catalysts. Their synthesis was carried out without the use of solvents, which made it possible to avoid the stages of their separation from the solution and the utilization of waste liquids.

View Article and Find Full Text PDF

DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA.

View Article and Find Full Text PDF

Rad54 is a eukaryotic protein that plays an important role in homologous recombination. Rad54, a member of the Swi2/Snf2 family, binds to Holliday junctions with high specificity and promotes their branch migration in an ATP hydrolysis-dependent manner. Here we describe the methods our laboratory used to characterize the branch migration activity of Rad54.

View Article and Find Full Text PDF

Replication protein A (RPA), a major eukaryotic ssDNA-binding protein, is essential for all metabolic processes that involve ssDNA, including DNA replication, repair, and damage signaling. To perform its functions, RPA binds ssDNA tightly. In contrast, it was presumed that RPA binds RNA weakly.

View Article and Find Full Text PDF

Proteins of the Rad51 family play a key role in homologous recombination by carrying out DNA strand exchange. Here, we present the methodology and the protocols for the 4-strand exchange between gapped circular DNA and homologous linear duplex DNA promoted by human Rad51 and Escherichia coli RecA orthologs. This reaction includes formation of joint molecules and their extension by branch migration in a polar manner.

View Article and Find Full Text PDF

In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities.

View Article and Find Full Text PDF

Cancer cells express high levels of CK2, and its inhibition leads to apoptosis. CK2 has therefore emerged as a new drug target for cancer therapy. A biligand inhibitor ARC-772 was constructed by conjugating 4-(2-amino-1,3-thiazol-5-yl)benzoic acid and a carboxylate-rich peptoid.

View Article and Find Full Text PDF

RNA can serve as a template for DNA double-strand break repair in yeast cells, and Rad52, a member of the homologous recombination pathway, emerged as an important player in this process. However, the exact mechanism of how Rad52 contributes to RNA-dependent DSB repair remained unknown. Here, we report an unanticipated activity of yeast and human Rad52: inverse strand exchange, in which Rad52 forms a complex with dsDNA and promotes strand exchange with homologous ssRNA or ssDNA.

View Article and Find Full Text PDF

Determination of biological activity of gonadotropin hormones is essential in reproductive medicine and pharmaceutical manufacturing of the hormonal preparations. The aim of the study was to adopt a G-protein coupled receptor (GPCR)-mediated signal transduction pathway based assay for quantification of biological activity of gonadotropins. We focussed on studying human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH), as these hormones are widely used in clinical practice.

View Article and Find Full Text PDF

Homologous recombination (HR) plays an important role in maintaining genomic integrity. It is responsible for repair of the most harmful DNA lesions, DNA double-strand breaks and inter-strand DNA cross-links. HR function is also essential for proper segregation of homologous chromosomes in meiosis, maintenance of telomeres, and resolving stalled replication forks.

View Article and Find Full Text PDF

RAD52 is a member of the homologous recombination (HR) pathway that is important for maintenance of genome integrity. While single RAD52 mutations show no significant phenotype in mammals, their combination with mutations in genes that cause hereditary breast cancer and ovarian cancer like BRCA1, BRCA2, PALB2 and RAD51C are lethal. Consequently, RAD52 may represent an important target for cancer therapy.

View Article and Find Full Text PDF

Cyclic adenosine monophosphate (cAMP) is a second messenger of many G-protein-coupled receptors. The change in cellular cAMP level has widely been used to estimate the biological activity of various GPCR-specific agents. Förster resonance energy transfer (FRET) biosensors have been around for almost 10 years and became increasingly popular for cAMP detection.

View Article and Find Full Text PDF

Despite the availability of numerous conceptually different approaches for the characterization of ligand-receptor interactions, there remains a great requirement for complementary methods that are suitable for kinetic studies, especially for the characterization of membrane protein systems and G protein-coupled receptors (GPCRs) in particular. One of the potential approaches that inherently fits well for this purpose is fluorescence anisotropy (FA), a method that allows continuous monitoring of ligand binding processes and characterization of ligand binding dynamics. However, significant changes in FA signal of fluorescently labeled ligands can be detected only if the ratio of bound to free fluorescent ligand portions is altered, which means that receptor and ligand concentrations have to be comparable.

View Article and Find Full Text PDF

The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy.

View Article and Find Full Text PDF

The present study for the first time is devoted to identify central effects of synthetic lunasin, a 43 amino acid peptide. A markedly expressed neuroleptic/cataleptic effect was observed at low (0.1-10 nmol/mouse) centrally administered doses in male C57Bl/6 mice.

View Article and Find Full Text PDF

Cyclic adenosine monophosphate (cAMP) is a second messenger of many G-protein-coupled receptors (GPCRs) and a useful readout molecule to estimate the biological activity of various GPCR-specific agents. Here we report the development and use of a Förster resonance energy transfer (FRET) biosensor for cAMP (Epac2-camps) combined with a baculovirus-based BacMam transduction system. The constructed BacMam-Epac2-camps viral transduction system is a simple and robust tool for ligand screening at the second-messenger level in a variety of mammalian cell lines.

View Article and Find Full Text PDF

The homologous recombination (HR) pathway plays a crucial role in the repair of DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs). RAD51, a key protein of HR, possesses a unique activity: DNA strand exchange between homologous DNA sequences. Recently, using a high-throughput screening (HTS), we identified compound 1 (B02), which specifically inhibits the DNA strand exchange activity of human RAD51.

View Article and Find Full Text PDF

Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand.

View Article and Find Full Text PDF

Double-stranded DNA breaks (DSB), the most harmful type of DNA lesions, cause cell death and genome instability. Homologous recombination repairs DSB using homologous DNA sequences as templates. Here we describe a set of reactions that lead to reconstitution of the double-stranded DNA break repair process in vitro employing purified human homologous recombination proteins and DNA polymerase η.

View Article and Find Full Text PDF

The Holliday junction (HJ), a cross-shaped structure that physically links the two DNA helices, is a key intermediate in homologous recombination, DNA repair, and replication. Several helicase-like proteins are known to bind HJs and promote their branch migration (BM) by translocating along DNA at the expense of ATP hydrolysis. Surprisingly, the bacterial recombinase protein RecA and its eukaryotic homologue Rad51 also promote BM of HJs despite the fact they do not bind HJs preferentially and do not translocate along DNA.

View Article and Find Full Text PDF

The ubiquitously expressed Rad51 recombinase and the meiosis-specific Dmc1 recombinase promote the formation of strand-invasion products (D-loops) between homologous molecules. Strand-invasion products are processed by either the double-strand break repair (DSBR) or synthesis-dependent strand annealing (SDSA) pathway. D-loops destined to be processed by SDSA need to dissociate, producing non-crossovers, and those destined for DSBR should resist dissociation to generate crossovers.

View Article and Find Full Text PDF

The Holliday junction is a key intermediate of DNA repair, recombination, and replication. Branch migration of Holliday junctions is a process in which one DNA strand is progressively exchanged for another. Branch migration of Holliday junctions may serve several important functions such as affecting the length of genetic information transferred between homologous chromosomes during meiosis, restarting stalled replication forks, and ensuring the faithful repair of double strand DNA breaks by homologous recombination.

View Article and Find Full Text PDF

Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair.

View Article and Find Full Text PDF

A possible role for structure-specific recognition protein 1 (SSRP1) in replication-associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication-associated DNA damage, in mammalian cells. Surprisingly, over-expression of SSRP1 reduced the number of hprt(+) recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double-strand break formation.

View Article and Find Full Text PDF