Micromachines (Basel)
September 2021
It is generally accepted that inducing molecular alignment in a polymer precursor via mechanical stresses influences its graphitization during pyrolysis. However, our understanding of how variations of the imposed mechanics can influence pyrolytic carbon microstructure and functionality is inadequate. Developing such insight is consequential for different aspects of carbon MEMS manufacturing and applicability, as pyrolytic carbons are the main building blocks of MEMS devices.
View Article and Find Full Text PDFAdvances in stem-cell therapy rely on new, multifunctional smart scaffolds (MSS) to promote growth while simultaneously characterizing stem cells undergoing selective differentiation. Nondestructive cell characterization techniques, such as electrochemical detection of lineage-specific metabolites, play a critical role in translational stem-cell therapy by providing clinicians with real-time information to evaluate cell-readiness for transplant. However, electrochemical sensors that provide biophysical cues capable of guiding cell fate, while preserving electroactive functionality, remain unavailable.
View Article and Find Full Text PDFIn this work, we report on a rapid, efficient electrochemical iodine sensor based on mechanically treated carbon nanofiber (MCNF) electrodes. The electrode’s highly graphitic content, unique microstructure, and the presence of nitrogen heteroatoms in its atomic lattice contribute to increased heterogeneous electron transfer and improved kinetics compared to conventional pyrolytic carbons. The electrode demonstrates selectivity for iodide ions in the presence of both interfering agents and high salt concentrations.
View Article and Find Full Text PDFGraphitic carbons' unique attributes have attracted worldwide interest towards their development and application. Carbon pyrolysis is a widespread method for synthesizing carbon materials. However, our understanding of the factors that cause differences in graphitization of various pyrolyzed carbon precursors is inadequate.
View Article and Find Full Text PDFCatalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H₂O₂), reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN) mats and its use in H₂O₂ sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT) prior to the pyrolysis step.
View Article and Find Full Text PDFGraphene possesses many remarkable properties and shows promise as the future material for building nanoelectronic devices. For many applications such as graphene-based field-effect transistors (GFET), it is essential to control or modulate the electronic properties by means of doping. Using spatially controlled plasma-assisted CF(4) doping, the Dirac point shift of a GFET covered with a polycrystalline PS-P4VP block co-polymer (BCP) [poly(styrene-b-4-vinylpyridine)] having a cylindrical morphology can be controlled.
View Article and Find Full Text PDFA high-throughput metrology method for measuring the thickness and uniformity of entire large-area chemical vapor deposition-grown graphene sheets on arbitrary substrates is demonstrated. This method utilizes the quenching of fluorescence by graphene via resonant energy transfer to increase the visibility of graphene on a glass substrate. Fluorescence quenching is visualized by spin-coating a solution of polymer mixed with fluorescent dye onto the graphene then viewing the sample under a fluorescence microscope.
View Article and Find Full Text PDFWe describe the fabrication of highly sensitive graphene based field effect transistor (FET) biosensors with a cost-effective approach and their application in label-free Deoxyribonucleic acid (DNA) detection. Chemical vapor deposition (CVD) grown graphene layers were used to achieve mass production of FET devices via conventional photolithographic patterning. Non-covalent functionalization of the graphene layer with 1-Pyrenebutanoic acid succinimidyl ester ensures high conductivity and sensitivity of the FET device.
View Article and Find Full Text PDFGraphene is a single sheet of carbon atoms with outstanding electrical and physical properties and is being exploited for applications in electronics, sensors, photovoltaics, and energy storage. A novel 3D architecture called a pillared graphene nanostructure (PGN) is a combination of two allotropes of carbon, including graphene and carbon nanotubes. A one-step chemical vapor deposition process for large-area PGN fabrication via a combination of surface catalysis and in situ vapor-liquid-solid mechanisms is described.
View Article and Find Full Text PDF