This study presents the ex situ development and characterization of bacterial cellulose (BC) membranes loaded with bioactive Sage and Neem extracts for enhanced antimicrobial applications. Utilizing discarded fruit waste as a cost-effective carbon source, BC production was optimized, yielding membranes with improved properties. Neem and Sage extracts, obtained via Soxhlet extraction, exhibited significant antibacterial activity against Escherichia coli and Staphylococcus aureus, with minimum inhibitory concentrations of 3.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) has emerged as a significant and pressing public health concern, posing serious challenges to effectively preventing and treating persistent diseases. Despite various efforts made in recent years to address this problem, the global trends of AMR continue to escalate without any indication of decline. As AMR is well-known for antibiotics, developing new materials such as metal containing compounds with different mechanisms of action is crucial to effectively address this challenge.
View Article and Find Full Text PDFBenzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products.
View Article and Find Full Text PDFThis study was aimed to develop low-cost bacterial cellulose (BC)-based antibacterial composite with pomegranate (Punica granatum L.) peel extract (PGPE) for potential biomedical applications. BC was cost-effectively produced by utilizing food wastes, and PGPE was ex situ impregnated into its hydrogel.
View Article and Find Full Text PDFDeterioration in the environmental ecosystems through the depletion of nonrenewable resources and the burden of deleterious contaminants is considered a global concern. To this end, great interest has been shown in the use of renewable and environmentally-friendly reactive materials dually to promote environmental sustainability and cope with harmful contaminants. Among the different available options, the use of nanocellulose (NC) as an environmentally benign and renewable natural nanomaterial is an attractive candidate for environmental remediation owing to its miraculous physicochemical characteristics.
View Article and Find Full Text PDFBacterial cellulose (BC), also termed bio-cellulose, has been recognized as a biomaterial of vital importance, thanks to its impressive structural features, diverse synthesis routes, high thermomechanical properties, and its ability to combine with multiple additives to form composites for a wide range of applications in diversified areas. Its purity, nontoxicity, and better physico-mechanical features than plant cellulose (PC) make it a better choice for biological applications. However, a major issue with the use of BC instead of PC for various applications is its high production costs, mainly caused by the use of expensive components in the chemically defined media, such as Hestrin-Schramm (HS) medium.
View Article and Find Full Text PDFBacterial cellulose (BC), an extracellular polysaccharide, is a versatile biopolymer due to its intrinsic physicochemical properties, broad-spectrum applications, and remarkable achievements in different fields, especially in the biomedical field. Presently, the focus of BC-related research is on the development of scaffolds containing other materials for in-vitro and in-vivo biomedical applications. To this end, prime research objectives concern the biocompatibility of BC and the development of three-dimensional (3D) BC-based scaffolds.
View Article and Find Full Text PDFThis study reports the synthesis of bacterial cellulose (BC) hydrogel sheets and their utilization as a support for silver‑nickel oxide nanocomposites (Ag/NiO). A two-step facile hydrothermal method was employed for the preparation of Ag/NiO, followed by impregnation into BC hydrogel sheets. A 20% Ag/NiO composition was revealed by dry weight analysis.
View Article and Find Full Text PDFThe current study was aimed at developing BC-Cactus (BCC) composite hydrogels with impressive mechanical features for their potential applications in medical and environmental sectors. BCC composites hydrogels were developed through cactus gel coating on a never dried BC matrix. The FE-SEM micrographs confirmed the saturation of BC fibrils with cactus gel.
View Article and Find Full Text PDFThe unique pool of features makes bacterial cellulose (BC) a robust platform to tailor its functionalities. Herein, the BC matrix was reinforced with multiwalled carbon nanotubes (MWCNT) to control infection and accelerate the healing process of diabetic wounds. The prepared BC-MWCNT composite film was characterized and antibacterial activity was assessed.
View Article and Find Full Text PDFThe unique properties and advantages of edible films over conventional food packaging have led the way to their extensive exploration in recent years. Moreover, the incorporation of bioactive components during their production has further enhanced the intrinsic features of packaging materials. This study was aimed to develop edible and bioactive food packaging films comprising yeast incorporated into bacterial cellulose (BC) in conjunction with carboxymethyl cellulose (CMC) and glycerol (Gly) to extend the shelf life of packaged food materials.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2021
The innate structural and functional properties of bacterial cellulose (BC) have been greatly improved by developing its composites with other materials for its applications in different fields. In the present study, BC- (BCA) gel composite with high tensile strength was developed and characterized for its potential applications in environmental and medical fields. FE-SEM micrographs showed the impregnation of gel into the fibril network of BC.
View Article and Find Full Text PDFIn order to elucidate the hygroscopic effects on impact-resistance of carbon fiber/epoxy quasi-isotropic composite plates, low-velocity impact tests are conducted on dry and hygroscopically conditioned plates, respectively, under identical configurations. For the impact tests, plates were immersed in the hot water at 80 °C to absorb a different amount of moisture content (MC). Experimental results reveal that the presence of the MC plays a pivotal role by improving the impact-resistance of composite plates.
View Article and Find Full Text PDFThe current study was devised to explore the antibacterial activity and underlying mechanism of spinel ferrite nanoparticles (NPs) along with their biocompatibility and wound healing potentials. In this regard, nickel ferrite and zinc/nickel ferrite NPs were synthesized a modified co-precipitation method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy Energy-dispersive X-ray spectroscopy (EDX). The biocompatibility of the synthesized NPs with human dermal fibroblast (HDF) and red blood cells (RBCs) was assessed.
View Article and Find Full Text PDFBacterial cellulose (BC) has received immense interest in medical, pharmaceutical, and other related fields owing to its intrinsic physical, mechanical, and biological features. Its structural features offer an ideal environment for developing composites, thereby further extending its areas of applications. BC was initially used in wound dressing, artificial blood vessels, organ development, and tissue regeneration; however, the recent focus has switched to 3D printing techniques.
View Article and Find Full Text PDFThere is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics.
View Article and Find Full Text PDFGreen synthesis, an emerging field in bionanotechnology, refers to the utilization of non-toxic, biologically safe, and eco-friendly substances for the synthesis of desired materials. It provides both economic and environmental benefits along with simple, cost-effective, and reproducible synthesis approaches that result in the development of stable materials. The green synthesis approaches use living biotemplates, including plants and different microorganisms such as viruses, bacteria, fungi, algae, and actinomycetes.
View Article and Find Full Text PDFCore-shell polymers represent a class of composite particles comprising of minimum two dissimilar constituents, one at the center known as a core which is occupied by the other called shell. Core-shell molecularly imprinting polymers (CSMIPs) are composites prepared via printing a template molecule (analyte) in the coreshell assembly followed by their elimination to provide the everlasting cavities specific to the template molecules. Various other types of CSMIPs with a partial shell, hollow-core and empty-shell are also prepared.
View Article and Find Full Text PDFBackground: Natural phytochemicals and their derivatives have been used in medicine since prehistoric times. Natural phytochemicals have potential uses against various disorders, including cancers. However, due to low bioavailability, their success in clinical trials has not been reproduced.
View Article and Find Full Text PDFBackground: Bacterial cellulose (BC) has been extensively utilized in a wide range of applications specifically in the biomedical field thanks to its excellent physico-chemical and biological features. The major limitation restricting its application in certain areas is its high production cost. Its widespread applications demand exploration of alternative production media compared to the existing expensive ones.
View Article and Find Full Text PDF