Publications by authors named "Mazen Garaleh"

This study synthesized zinc oxide nanoparticles (ZnO NPs) using a novel green approach, with Sida acuta leaf extract as a capping and reducing agent to initiate nucleation and structure formation. The innovation of this study lies in demonstrating the originality of utilizing zinc oxide nanoparticles for antibacterial action, antioxidant potential, and catalytic degradation of Congo red dye. This unique approach harnesses eco-friendly methods to initiate nucleation and structure formation.

View Article and Find Full Text PDF

Modifying wide band gap ZnO nanoparticles surface by combine narrow bandgap semiconductors is a novel route to promote the ZnO to diverse applications. Herein, different metal sulfides (CdS, AgS and BiS) were decorated on ZnO surface using facile a chemical route for photocatalytic application. Crystal structure, surface morphology and optical changes for the surface modified ZnO were studied by using various characterization techniques.

View Article and Find Full Text PDF

Current health and environmental concerns about the abundance and drawbacks of municipal wastewater as well as industrial effluent have prompted the development of novel and innovative treatment processes. A global shortage of clean water poses significant challenges to the survival of all life forms. For the removal of both biodegradable and non-biodegradable harmful wastes/pollutants from water, sophisticated wastewater treatment technologies are required.

View Article and Find Full Text PDF

The present focused on comparative study on synthesis of ZnO nanoparticles (ZnO NPs) using chemical method via alkaline precipitation method (ZnO(A) NPs) using NaOH and biogenic method using termite mound extract (ZnO(B) NPs). GC-MS analysis revealed that D-limonene present in termite mound extract might be responsible for the synthesis of ZnO(B) NPs. XRD patterns confirmed hexagonal crystalline structure of ZnO(A) and (B) NPs.

View Article and Find Full Text PDF

Aquifers are severely polluted with organic and inorganic pollutants, posing a serious threat to the global ecological system's balance. While various traditional methods are available, the development of innovative methods for effluent treatment and reuse is critical. Polymers have recently been widely used in a variety of industry sectors due to their unique properties.

View Article and Find Full Text PDF

Nanomaterials have many advantages over bulk materials, including enhanced surface-to-volume proportion as well as magnetic traits. It has been a steady rise in research with using nanomaterials in various biomedical fields in the past few decades. Constructing nanomaterials has emerged as a leading research primary concern in order to discover specialized biomedical applications.

View Article and Find Full Text PDF

Nanoparticles synthesis from green chemistry method is gaining a lot of attention due to their non-toxic, low cost and facile. In this study, a copper oxide nanoparticle (CuO NPs) was synthesized using Sida cordifolia aqueous leaf extract and incorporated chitosan biomolecules to potential enhancing of biological properties. The CuO NPs and chitosan (CS) embedded nanocomposite was noted as CuO-CS nanocomposite, its was physicochemical characterized by using of UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray Diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM) with Energy dispersive X-ray (EDX) analysis.

View Article and Find Full Text PDF

Advanced biochar blended nanoparticles substances, such as nano biochar or nanocomposites, have provided long-term solutions to a wide range of modern-day problems. Biochar blended nano-composites can be created to create better composite materials that combine the benefits of biochar and nanoparticles. Such materials have been typically improved with active functional groups, porous structure, active surface area, catalytic deterioration ability, as well as easy recovery or separation of pollutants.

View Article and Find Full Text PDF