Publications by authors named "Mazdak Khajehpour"

Biophysical studies in the last two decades demonstrate that salts affect biomolecules in an ion-specific manner. Diverse biological processes such as protein folding, protein precipitation, protein coacervation and phase separation, and protein oligomerization, all show that this ion specificity directly relates to how individual ions interact with biomolecular surfaces. Interestingly, although ion-specific effects upon enzyme catalytic processes are well-known in the literature, a molecular level description of these effects is not yet available.

View Article and Find Full Text PDF

The bacteriophage protein paratox (Prx) blocks quorum sensing in its streptococcal host by directly binding the signal receptor and transcription factor ComR. This reduces the ability of Streptococcus to uptake environmental DNA and protects phage DNA from damage by recombination. Past work characterizing the Prx:ComR molecular interaction revealed that paratox adopts a well-ordered globular fold when bound to ComR.

View Article and Find Full Text PDF

Deubiquitination of cellular substrates by viral proteases is a mechanism used to interfere with host cellular signaling processes, shared between members of the coronavirus- and arterivirus families. In the case of Arteriviruses, deubiquitinating and polyprotein processing activities are accomplished by the virus-encoded papain-like protease 2 (PLP2). Several studies have implicated the deubiquitinating activity of the porcine reproductive and respiratory syndrome virus (PRRSV) PLP2 in the downregulation of cellular interferon production, however to date, the only arterivirus PLP2 structure described is that of equine arteritis virus (EAV), a distantly related virus.

View Article and Find Full Text PDF

Several Pseudomonas aeruginosa AmpC mutants have emerged that exhibit enhanced activity against ceftazidime and ceftolozane, while also evading inhibition by avibactam. Interestingly, P. aeruginosa strains harboring these AmpC mutations fortuitously exhibit enhanced carbapenem susceptibility.

View Article and Find Full Text PDF

The transfer model suggests that urea unfolds proteins mainly by increasing the solubility of the amide backbone, probably through urea-induced increase in hydrogen bonding. Other studies suggest that urea addition increases the magnitude of solvent-solute van der Waals interactions, which increases the solubility of nonpolar sidechains. More recent analyses hypothesize that urea has a similar effect in increasing the solubility of backbone and sidechain groups.

View Article and Find Full Text PDF

This work studies the effects of alkaline-earth cation addition on the unfolding free energy of a model protein, pancreatic Ribonuclease A (RNase A) by differential scanning calorimetry analysis. RNase A was chosen because: a) it does not specifically bind Mg , Ca and Sr cations and b) maintains its structural integrity throughout a large pH range. We have measured and compared the effects of NaCl, MgCl , CaCl and SrCl addition on the melting point of RNase A.

View Article and Find Full Text PDF

Tay-Sachs and Sandhoff diseases are genetic disorders resulting from mutations in or , which code for the α- and β-subunits of the heterodimer β-hexosaminidase A (HexA), respectively. Loss of HexA activity results in the accumulation of GM2 ganglioside (GM2) in neuronal lysosomes, culminating in neurodegeneration and death, often by age 4. Previously, we combined critical features of the α- and β-subunits of HexA into a single subunit to create a homodimeric enzyme known as HexM.

View Article and Find Full Text PDF

Streptococcus pyogenes, or Group A Streptococcus, is a Gram-positive bacterium that can be both a human commensal and a pathogen. Central to this dichotomy are temperate bacteriophages that incorporate into the bacterial genome as prophages. These genetic elements encode both the phage proteins and the toxins harmful to the human host.

View Article and Find Full Text PDF

Biocides such as quaternary ammonium compounds (QACs) are potentially important contributors towards bacterial antimicrobial resistance development, however, their contributions are unclear due to a lack of internationally recognized biocide testing standards. Methods to detect QAC tolerance are limited to laborious traditional antimicrobial susceptibility testing (AST) methods. Here, we developed a rapid fluorescent dye-based membrane impermeant assay (RFDMIA) to discriminate QAC susceptibility among Gram-negative Enterobacterales and Pseudomonadales species.

View Article and Find Full Text PDF
Article Synopsis
  • AmpC β-lactamase contributes significantly to antibiotic resistance, particularly through mutations that enhance its effectiveness against certain β-lactam antibiotics while reducing their inhibition by β-lactamase inhibitors (BLIs).
  • Mutations like E247K, G183D, T96I, and ΔG229-E247 increase AmpC’s flexibility and catalytic efficiency, allowing for faster breakdown of specific antibiotics like ceftolozane and ceftazidime.
  • Understanding these mutations could help in developing new β-lactams and BLIs that are less prone to resistance mechanisms.
View Article and Find Full Text PDF

The solubility of hydrophobic molecules in water is sensitive to salt addition in an ion-specific manner. Such "salting-out" and "salting-in" properties have been shown to be a major contributor to the measured ion-specific Hofmeister effects that are observed in many biophysical phenomena. Various theoretical models have suggested a number of disparate mechanisms for salting-out (salting-in) of hydrophobic moieties, the most popular of which include preferential interaction, water-mediated association, and electrostriction models.

View Article and Find Full Text PDF

Rapid mixing of aqueous solutions is a crucial first step to study the kinetics of fast biochemical reactions with high temporal resolution. Remarkable progress toward this goal has been made through the development of advanced stopped-flow mixing techniques resulting in reduced dead times, and thereby extending reaction monitoring capabilities to numerous biochemical systems. Concurrently, piezoelectric actuators for through-space liquid droplet sample delivery have also been applied in several experimental systems, providing discrete picoliter sample volume delivery and precision sample deposition onto a surface, free of confinement within microfluidic devices, tubing, or other physical constraints.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and among the most damaging chemical compounds with regard to living organisms. Because of their persistence and wide distribution removal from the environment is an important challenge. Here we report a new Nano container matrix based on the deep sea archaea-derived RHCC-Nanotube (RHCC-NT), which rapidly and preferentially binds low molecular weight PAHs.

View Article and Find Full Text PDF

It has long been known that large soft anions like bromide, iodide and thiocyanate are protein denaturing agents, but their mechanism of action is still unclear. In this work we have investigated the protein denaturing properties of these anions using Ribonuclease A (RNase A) as a model protein system. Salt-induced perturbations to the protein folding free energy were determined using differential scanning calorimetry and the results demonstrate that the addition of sodium iodide and sodium thiocyanate significantly decreases the melting temperature of the protein.

View Article and Find Full Text PDF

Guanidinium chloride (GdmCl) is one of the most common protein denaturants. Although GdmCl is well known in the field of protein folding, the mechanism by which it denatures proteins is not well understood. In fact, there are few studies looking at its effects on hydrophobic interactions.

View Article and Find Full Text PDF

Anhydro-sugar kinases are unique from other sugar kinases in that they must cleave the 1,6-anhydro ring of their sugar substrate to phosphorylate it using ATP. Here we show that the peptidoglycan recycling enzyme 1,6-anhydro-N-acetylmuramic acid kinase (AnmK) from Pseudomonas aeruginosa undergoes large conformational changes during its catalytic cycle, with its two domains rotating apart by up to 32° around two hinge regions to expose an active site cleft into which the substrates 1,6-anhydroMurNAc and ATP can bind. X-ray structures of the open state bound to a nonhydrolyzable ATP analog (AMPPCP) and 1,6-anhydroMurNAc provide detailed insight into a ternary complex that forms preceding an operative Michaelis complex.

View Article and Find Full Text PDF

Osmolytes are small, soluble organic molecules produced by living organisms for maintaining cell volume. These molecules have also been shown to have significant effects on the stability of proteins. Perhaps one of the most studied osmolytes is Trimethylamine-N-oxide (TMAO).

View Article and Find Full Text PDF

Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2).

View Article and Find Full Text PDF

Urea is perhaps the most common denaturant used for studying proteins. However the mechanism of denaturation is still not well understood. Recent theoretical work suggests that van der Waals interactions between urea and non-polar amino acid residues are a major contributor to the protein denaturation process.

View Article and Find Full Text PDF

Background: COMPcc forms a pentameric left-handed coiled coil that is known to bind hydrophilic signaling molecules such as vitamin D(3), and vitamin A.

Principal Findings: In an integrated approach we reveal the unique binding properties of COMPcc for saturated and unsaturated fatty acids. Our observations suggest that residues Met33 (gating pore), Thr40/Asn41 (water chamber) and Gln54 (electrostatic trap) are key elements for the binding of fatty acids by COMPcc.

View Article and Find Full Text PDF

Ionic species have been shown to significantly perturb the interactions between non-polar solutes in aqueous solution. These perturbations are often analyzed in terms of the interactions existing between hydrophobic surfaces and ions. It has been known for some time, that ions with a high charge density are repelled from hydrophobic surfaces while ions with a low charge density tend to stick to these surfaces.

View Article and Find Full Text PDF

Salt ions affect protein stability in a variety of ways. In general, these effects have either been interpreted from a charge solvation/charge screening standpoint or they have been considered to be the result of ion-specific interactions with a particular protein. Recent theoretical work suggests that a major contribution to salt effects on proteins is through the interaction of salt ions that are located near the protein surface and their induced point image charges that are located in the low-dielectric protein cavity.

View Article and Find Full Text PDF
Article Synopsis
  • The addition of ubiquitin (Ub) and ISG15 proteins plays a crucial role in antiviral immune responses, but some viruses have evolved proteases to remove these molecules, undermining these defenses.
  • Recent research revealed the crystal structures of a viral protease from the Crimean-Congo hemorrhagic fever virus (CCHFV) binding to Ub and ISG15, showcasing a unique structural interaction that differs from those of eukaryotic proteases.
  • This study identifies key structural features for substrate binding and enables the potential development of targeted small-molecule inhibitors to combat viral immune evasion strategies involving deubiquitination and deISGylation.
View Article and Find Full Text PDF

Water molecules interact with one another via hydrogen bonds. Experimental and theoretical evidence indicates that these hydrogen bonds occur in two modalities--high- and low-angle hydrogen bonding--and that the addition of various solutes to water affects only the number of water molecules participating in a specific type of hydrogen bond interactions, not the nature of the water-water interactions. In this work, we have investigated the effect of each of these hydrogen bonding types upon the activity of the enzyme ribonuclease t1.

View Article and Find Full Text PDF

The Yersinia protein tyrosine phosphatase (YopH) contains a loop of ten amino acids (the WPD loop) that covers the entrance of the active site of the enzyme during substrate binding. In this work the substrate mimicking competitive inhibitor p-nitrocatechol sulfate (PNC) is used as a probe of the active site. The dynamics of the WPD loop was determined by subjecting an equilibrated system containing YopH, PNC, and YopH bound to PNC to a laser induced temperature jump, and subsequently following the change in equilibrium due to the perturbation.

View Article and Find Full Text PDF