Alpha-synuclein is one of several key factors in the regulation of nerve activity. It is striking that single- or multiple-point mutations in the 140-amino-acid-long protein can change its structure, which leads to the protein's aggregation and fibril formation (which is associated with several neurodegenerative diseases, , Parkinson's disease). We recently demonstrated that a single nanometer-scale pore can identify proteins based on its ability to discriminate between protease-generated polypeptide fragments.
View Article and Find Full Text PDFNanopore-based single-molecule analysis technique is a promising approach in the field of proteomics. In this Technical Brief, the interaction between the biological nanopore of Aerolysin (AeL) and peptides is investigated, focusing on potential biases depending on the AeL activation protocol. Our results reveal that residual trypsin, which may be unintentionally introduced in analyte solution when using a classical AeL activation protocol, can induce a significant formation of shorter peptides by enzymatic degradation of longer ones, which may lead to unwanted effects and/or misinterpretations.
View Article and Find Full Text PDFThe implementation of a reliable, rapid, inexpensive, and simple method for whole-proteome identification would greatly benefit cell biology research and clinical medicine. Proteins are currently identified by cleaving them with proteases, detecting the polypeptide fragments with mass spectrometry, and mapping the latter to sequences in genomic/proteomic databases. Here, we demonstrate that the polypeptide fragments can instead be detected and classified at the single-molecule limit using a nanometer-scale pore formed by the protein aerolysin.
View Article and Find Full Text PDFBackground: Bone marrow derived endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) involved in neo-angiogenesis and endothelial homeostasis and are considered as a circulating reservoir for endothelial repair. Many studies showed that EPCs from patients with cardiovascular pathologies are impaired and insufficient; hence, allogenic sources of EPCs from adult or cord blood are considered as good choices for cell therapy applications. However, allogenic condition increases the chance of immune rejection, especially by T cells, before exerting the desired regenerative functions.
View Article and Find Full Text PDFBackground: Endothelial progenitor cells (EPCs) are non-differentiated endothelial cells (ECs) present in blood circulation that are involved in neo-vascularization and correction of damaged endothelial sites. Since EPCs from patients with vascular disorders are impaired and inefficient, allogenic sources from adult or cord blood are considered as good alternatives. However, due to the reaction of immune system against allogenic cells which usually lead to their elimination, we focused on the exact role of EPCs on immune cells, particularly, T cells which are the most important cells applied in immune rejection.
View Article and Find Full Text PDF