Publications by authors named "Mazat J"

Mitochondrial and thus cellular energetics are highly regulated both thermodynamically and kinetically. Cellular energetics is of prime importance in the regulation of cellular functions since it provides ATP for their accomplishment. However, cellular energetics is not only about ATP production but also about the ability to re-oxidize reduced coenzymes at a proper rate, such that the cellular redox potential remains at a level compatible with enzymatic reactions.

View Article and Find Full Text PDF

Metabolic Control Theory (MCT) and Metabolic Control Analysis (MCA) are the two sides, theoretical and experimental, of the measurement of the sensitivity of metabolic networks in the vicinity of a steady state. We will describe the birth and the development of this theory from the first analyses of linear pathways up to a global mathematical theory applicable to any metabolic network. We will describe how the theory, given the global nature of mitochondrial oxidative phosphorylation, solved the problem of what controls mitochondrial ATP synthesis and then how it led to a better understanding of the differential tissue expression of human mitochondrial pathologies and of the heteroplasmy of mitochondrial DNA, leading to the concept of the threshold effect.

View Article and Find Full Text PDF

Cancer cells display an altered energy metabolism, which was proposed to be the root of cancer. This early discovery was done by O. Warburg who conducted one of the first studies of tumor cell energy metabolism.

View Article and Find Full Text PDF

One-carbon metabolism (1C-metabolism), also called folate metabolism because the carbon group is attached to folate-derived tetrahydrofolate, is crucial in metabolism. It is at the heart of several essential syntheses, particularly those of purine and thymidylate. After a short reminder of the organization of 1C-metabolism, I list its salient features as reported in the literature.

View Article and Find Full Text PDF

In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover.

View Article and Find Full Text PDF

ROS (superoxide and oxygen peroxide in this paper) play a dual role as signalling molecules and strong oxidizing agents leading to oxidative stress. Their production mainly occurs in mitochondria although they may have other locations (such as NADPH oxidase in particular cell types). Mitochondrial ROS production depends in an interweaving way upon many factors such as the membrane potential, the cell type and the respiratory substrates.

View Article and Find Full Text PDF

Genome-scale models of metabolism (GEM) are used to study how metabolism varies in different physiological conditions. However, the great number of reactions involved in GEM makes it difficult to understand these variations. In order to have a more understandable tool, we developed a reduced metabolic model of central carbon and nitrogen metabolism, C2M2N with 77 reactions, 54 internal metabolites, and 3 compartments, taking into account the actual stoichiometry of the reactions, including the stoichiometric role of the cofactors and the irreversibility of some reactions.

View Article and Find Full Text PDF

Protein synthesis and degradation are essential processes that regulate cell status. Because labeling in bulky organs, such as fruits, is difficult, we developed a modeling approach to study protein turnover at the global scale in developing tomato () fruit. Quantitative data were collected for transcripts and proteins during fruit development.

View Article and Find Full Text PDF

Evidence for the Crabtree effect was first reported by H. Crabtree in 1929 and is defined as the glucose-induced decrease of cellular respiratory flux. This effect was observed in tumor cells and was not detected in most non-tumor cells.

View Article and Find Full Text PDF

Background: The complexity of metabolic networks can make the origin and impact of changes in central metabolism occurring during diseases difficult to understand. Computer simulations can help unravel this complexity, and progress has advanced in genome-scale metabolic models. However, many models produce unrealistic results when challenged to simulate abnormal metabolism as they include incorrect specification and localisation of reactions and transport steps, incorrect reaction parameters, and confounding of prosthetic groups and free metabolites in reactions.

View Article and Find Full Text PDF

Tomato is a model organism to study the development of fleshy fruit including ripening initiation. Unfortunately, few studies deal with the brief phase of accelerated ripening associated with the respiration climacteric because of practical problems involved in measuring fruit respiration. Because constraint-based modelling allows predicting accurate metabolic fluxes, we investigated the respiration and energy dissipation of fruit pericarp at the breaker stage using a detailed stoichiometric model of the respiratory pathway, including alternative oxidase and uncoupling proteins.

View Article and Find Full Text PDF

Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co-factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes.

View Article and Find Full Text PDF

Victor Henri's great contribution to the understanding of enzyme kinetics and mechanism is not always given the credit that it deserves. In addition, his earlier work in experimental psychology is totally unknown to biochemists, and his later work in spectroscopy and photobiology almost equally so. Applying great rigour to his analysis he succeeded in obtaining a model of enzyme action that explained all of the observations available to him, and he showed why the considerable amount of work done in the preceding decade had not led to understanding.

View Article and Find Full Text PDF

A kinetic model combining enzyme activity measurements and subcellular compartmentation was parameterized to fit the sucrose, hexose, and glucose-6-P contents of pericarp throughout tomato (Solanum lycopersicum) fruit development. The model was further validated using independent data obtained from domesticated and wild tomato species and on transgenic lines. A hierarchical clustering analysis of the calculated fluxes and enzyme capacities together revealed stage-dependent features.

View Article and Find Full Text PDF

The mitochondrial respiratory chain plays a crucial role in energy metabolism and its dysfunction is implicated in a wide range of human diseases. In order to understand the global expression of local mutations in the rate of oxygen consumption or in the production of adenosine triphosphate (ATP) it is useful to have a mathematical model in which the changes in a given respiratory complex are properly modeled. Our aim in this paper is to provide thermodynamics respecting and structurally simple equations to represent the kinetics of each isolated complexes which can, assembled in a dynamical system, also simulate the behavior of the respiratory chain, as a whole, under a large set of different physiological and pathological conditions.

View Article and Find Full Text PDF

To assess the influence of the environment on fruit metabolism, tomato (Solanum lycopersicum 'Moneymaker') plants were grown under contrasting conditions (optimal for commercial, water limited, or shaded production) and locations. Samples were harvested at nine stages of development, and 36 enzyme activities of central metabolism were measured as well as protein, starch, and major metabolites, such as hexoses, sucrose, organic acids, and amino acids. The most remarkable result was the high reproducibility of enzyme activities throughout development, irrespective of conditions or location.

View Article and Find Full Text PDF

Methods and equations for analysing the kinetics of enzyme-catalysed reactions were developed at the beginning of the 20th century in two centres in particular; in Paris, by Victor Henri, and, in Berlin, by Leonor Michaelis and Maud Menten. Henri made a detailed analysis of the work in this area that had preceded him, and arrived at a correct equation for the initial rate of reaction. However, his approach was open to the important objection that he took no account of the hydrogen-ion concentration (a subject largely undeveloped in his time).

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria are crucial for ATP production in nonphotosynthetic organisms, acting as the cell's power plant by utilizing nutrients and oxygen.
  • They also help maintain the cell's redox balance, which is important for overall cellular function.
  • The review discusses the complex relationship between ATP synthesis and the cell's redox state, highlighting some processes and theoretical models that explain this integration.
View Article and Find Full Text PDF

The respiratory chain is located in the inner membrane of mitochondria and produces the major part of the ATP used by a cell. Cardiolipin (CL), a double charged phospholipid composing ~10-20% of the mitochondrial membrane, plays an important role in the function and supramolecular organization of the respiratory chain complexes. We present an extensive set of coarse-grain molecular dynamics (CGMD) simulations aiming at the determination of the preferential interfaces of CLs on the respiratory chain complex III (cytochrome bc(1), CIII).

View Article and Find Full Text PDF

The bc1 complex or complex III is a central component of the aerobic respiratory chain in prokaryotic and eukaryotic organisms. It catalyzes the oxidation of quinols and the reduction of cytochrome c, establishing a proton motive force used to synthesize adenosine triphosphate (ATP) by the F1Fo ATP synthase. In eukaryotes, the complex III is located in the inner mitochondrial membrane.

View Article and Find Full Text PDF

An enzyme's activity is the consequence of its structure. The stochastic approach we developed to study the functioning of the respiratory complexes is based upon their 3D structure and their physical and chemical properties. Consequently it should predict their kinetic properties.

View Article and Find Full Text PDF

The bc1 complex is a central complex in the mitochondrial respiratory chain. It links the electrons transfer from ubiquinol (or coenzyme Q) to cytochrome c and proton translocation across the inner mitochondrial membrane. It is widely agreed that the "Q-cycle mechanism" proposed by Mitchell correctly describes the bc1 complex working.

View Article and Find Full Text PDF

Chronic hypoxia alters mitochondrial energy metabolism. In the heart, oxidative capacity of both ventricles is decreased after 3 weeks of chronic hypoxia. The aim of this study was to evaluate the reversal of these metabolic changes upon normoxia recovery.

View Article and Find Full Text PDF

Elementary flux mode analysis is a powerful tool for the theoretical study of metabolic networks. However, when the networks are complex, the determination of elementary flux modes leads to combinatorial explosion of their number which prevents from drawing simple conclusions from their analysis. To deal with this problem we have developed a method based on the Agglomeration of Common Motifs (ACoM) for classifying elementary flux modes.

View Article and Find Full Text PDF

The modelling of OXPHOS (oxidative phosphorylation) in order to integrate all kinetic and thermodynamic aspects of chemiosmotic theory has a long history. We briefly review this history and show how new ways of modelling are required to integrate a local model of the individual respiratory complexes into a global model of OXPHOS and, beyond that, into a reliable overall model of central metabolism.

View Article and Find Full Text PDF