Int J Biol Macromol
December 2024
Tissue deterioration and post-injury infections are the primary cause of skin diseases. Tissue engineering has developed various synthetic and natural polymers to generate bioactive scaffolds that can closely replicate the natural extracellular matrix (ECM). Decellularized tissues have emerged as a potential solution for reconstructing cutaneous lesions due to their ability to preserve the intricate protein structure and provide essential functional domains for cellular differentiation.
View Article and Find Full Text PDFColorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-β) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression.
View Article and Find Full Text PDFResistance of bacterial pathogens to conventional antibiotics has remained a significant challenge in managing post-wound infections, especially in developing countries. Here, a nanofibrous chitosan/poly (vinyl alcohol) (CS/PVA) mat was designed for controlled delivery of three different concentrations of two antibiotics (colistin/meropenem ratio of 32/64 μg/ml (AB1), 64/128 μg/ml (AB2), and 128/256 (AB3) μg/ml) with synergistic antibacterial activity against ATCC and extensively drug-resistant (XDR) Acinetobacter baumannii clinical isolates. The scaffolds showed a uniform fibrous structure with no bead formation with a sustained release of the antibiotics for one week.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2021
Decellularization, preservation protocol and storage time influence the biomechanical and biological properties of allografts and xenografts. Here, we examined the consequences of storage time on the antibacterial, angiogenic and biocompatibility properties of the decellularized placental sponge (DPS) in vitro and in vivo. The DPS samples were preserved for one, three and six months at -20 °C.
View Article and Find Full Text PDFTreatment of non-healing skin wounds infected with extensively drug-resistant (XDR) bacteria remains as a big challenge. To date, different biomaterials have been applied for treatment of post-wound infections, nevertheless their efficacy for treatment of the wounds infected with XDR isolates has not been determined yet. In this study, the potential of the thermo-responsive chitosan (TCTS) hydrogel for protection of full-thickness wounds XDR bacteria isolated from burn patients was evaluated both in vitro and in vivo in a rat model.
View Article and Find Full Text PDFIn this study, we synthesized thermo-responsive chitosan (TCTS) hydrogels, and loaded with different concentrations of antimicrobial peptide (AMP) (0, 4, 8 and 16 μg·ml) to fabricate an antibacterial wound dressing against resistant clinical isolates. Physico-chemical properties, release behavior, cytobiocompatibility and antibacterial activity of the AMP-TCTS hydrogels against standard strain and resistant Acinetobacter baumannii were fully determined in vitro. The TCTS-40% β-glycerolphosphate hydrogels showed a gelation time of 15 min at 37 °C.
View Article and Find Full Text PDFWe have already established that a short cationic peptide (CM11) has high antimicrobial activity against a number of bacterial pathogens. Considering the untreatable problem of burn infections caused by Pseudomonas aeruginosa and Acinetobacter baumannii, this study evaluated and compared antibacterial effects of the CM11 peptide and 1% silver-doped bioactive glass (AgBG) against extensively drug-resistant strains of these bacteria which were isolated from burn patients. Accordingly, the bacteria were isolated from burn patients and their antibiotic resistance patterns and mechanisms were fully determined.
View Article and Find Full Text PDFThe wound healing process is frequently associated with a number of major clinical challenges, due to the failure of commonly used antibiotics as a remedy for wounds. There have always been fascinating questions about the novel applications of bioactive glasses (BGs) and it is expected that in the next few years these types of materials may play an important role in many aspects of soft tissue regeneration. This research focuses on the feasibility of using silver- and fluoride-containing BGs against multidrug-resistant bacterial strains isolated from patients with burns.
View Article and Find Full Text PDFHuman amniotic membranes (HAMs) have attracted the attention of burn surgeons for decades due to favorable properties such as their antibacterial activity and promising support of cell proliferation. On the other hand, as a major implication in the health of burn patients, the prevalence of bacteria resistant to multiple antibiotics is increasing due to overuse of antibiotics. The aim of this study was to investigate whether HAMs (both fresh and acellular) are an effective antibacterial agent against antibiotic-resistant bacteria isolated from burn patients.
View Article and Find Full Text PDF