Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type-specific translation.
View Article and Find Full Text PDFAging causes chronic low-grade inflammation known as inflamm-aging. It is a risk factor for several chronic disorders, including chronic myelomonocytic leukemia (CMML), a hematological malignancy that is most prevalent in older people. Recent studies suggest a critical role for the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in inflamm-aging.
View Article and Find Full Text PDFInflammasomes are cytosolic innate immune sensors of pathogen infection and cellular damage that induce caspase-1-mediated inflammation upon activation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and can be detrimental, such as in coronavirus disease (COVID-19). However, the underlying mechanisms that control inflammasome activation are incompletely understood.
View Article and Find Full Text PDFProtein synthesis is a highly complex process executed by well-organized translation machinery. Ribosomes, tRNAs and mRNAs are the principal components of this machinery whereas RNA binding proteins and ribosome interacting partners act as accessory factors. Angiogenin (ANG)-Ribonuclease inhibitor (RNH1) system is one such accessory part of the translation machinery that came into focus afresh due to its unconventional role in the translation.
View Article and Find Full Text PDFTransfer of genetic material from parents to progeny via fusion of gametes is a way to ensure flow of information from one generation to the next. Apart from the genetic material, gametes provide a rich source of other factors such as RNA and proteins which can control traits of the embryo. Non-coding RNAs are not only carriers of regulatory information but can also encode memory of events of parental life.
View Article and Find Full Text PDFKalirin, a key player in axonal development, nerve growth and synaptic re-modeling, is implicated in many pathological conditions like schizophrenia and autism-spectrum disorders. Alternative promoters and splicing lead to functionally distinct isoforms, but the post-transcriptional regulation of Kalirin has not been studied. Here, we report a novel non-coding RNA, which we name , arising from the first exon of kalirin a () in the antisense orientation in zebrafish.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are key regulators of gene expression. In the brain, vital processes like neurodevelopment and neuronal functions depend on the correct expression of microRNAs. Perturbation of microRNAs in the brain can be used to model neurodegenerative diseases by modulating neuronal cell death.
View Article and Find Full Text PDFSeveral microRNAs have been implicated in neurogenesis, neuronal differentiation, neurodevelopment, and memory. Development of miRNA-based therapeutics, however, needs tools for effective miRNA modulation, tissue-specific delivery, and in vivo evidence of functional effects following the knockdown of miRNA. Expression of miR-29a is reduced in patients and animal models of several neurodegenerative disorders, including Alzheimer's disease, Huntington's disease, and spinocerebellar ataxias.
View Article and Find Full Text PDFThe human brain is one of the most complex biological systems, and the cognitive abilities have greatly expanded compared to invertebrates without much expansion in the number of protein coding genes. This suggests that gene regulation plays a very important role in the development and function of nervous system, by acting at multiple levels such as transcription and translation. In this article we discuss the regulatory roles of three classes of non-protein coding RNAs (ncRNAs)-microRNAs (miRNAs), piwi-interacting RNA (piRNAs) and long-non-coding RNA (lncRNA), in the process of neurogenesis and nervous function including control of synaptic plasticity and potential roles in neurodegenerative diseases.
View Article and Find Full Text PDF