Publications by authors named "Mayur Yc"

A series of benzylidene- and phenylethylidene-substituted acridone-2-carbohydrazide derivatives were designed, synthesized and evaluated for their cytotoxicity and response to p-AKT Ser. The structures of the synthesized compounds were confirmed by spectroscopic techniques and evaluated for AKT enzyme inhibition activities. Molecular docking and absorption, distribution, metabolism, elimination and toxicity studies were also performed.

View Article and Find Full Text PDF

Unlabelled: A series of -substituted acridone-2-carboxamide derivatives were synthesized and evaluated for their potent anti-cancer agents targeting AKT kinase. In vitro cytotoxicity activity of the target compounds was tested against breast cancer cell lines (MCF-7 and MDA-MB-231). Among the tested compounds, four compounds (, , , and ) exhibited promising anti-cancer activity against both cancer cell lines.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) belongs to the family of tyrosine kinase that is activated when a specific ligand binds to it. The EGFR plays a vital role in the cellular proliferation process, differentiation, and apoptosis. In the case of cancer, EGFR undergoes uncontrolled auto-phosphorylation that results in increased cellular proliferation and decreased apoptosis, causing cancer promotion.

View Article and Find Full Text PDF

The development of drug resistance and severe side-effects has reduced the clinical efficacy of the existing anti-cancer drugs available in the market. Thus, there is always a constant need to develop newer anti-cancer drugs with minimal adverse effects. Researchers all over the world have been focusing on various alternative strategies to discover novel, potent, and target specific molecules for cancer therapy.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the role of epidermal growth factor receptor (EGFR) as a target for cancer treatments, noting that mutations in EGFR can lead to drug resistance.
  • Researchers are developing new drugs by creating a pharmacophore model based on existing EGFR inhibitors to identify safe and effective molecules using computational methods.
  • The approach successfully screened a large database of potential ligands, identifying the top candidates for further testing in biological studies, which could lead to promising new inhibitors for EGFR in cancer therapy.
View Article and Find Full Text PDF

This research aims to develop and validate a bioanalytical method for simultaneous estimation of an antidiabetic combination using LC-MS/MS in rat plasma. Nateglinide and metformin hydrochloride are commonly used combination for clinical management of Type 2 diabetes. Hence, simultaneous determination in plasma is essential for the rapid analysis of samples from the pharmacokinetic studies.

View Article and Find Full Text PDF

A series of novel 1,3,4-oxadiazole derivatives with substituted phenyl ring were designed and synthesized with an objective of discovering newer anti-cancer agents targeting thymidine phosphorylase enzyme (TP). The 1,3,4-oxadiazole derivatives were synthesized by simple and convenient methods in the lab. Chemical structure of the all the synthesized compounds were characterized by IR, H NMR and mass spectral methods and evaluated for cytotoxicity by MTT method against two breast cancer cell lines (MCF-7 and MDA-MB-231).

View Article and Find Full Text PDF

Drug resistance is one of the critical challenges faced in the treatment of Glioma. There are only limited drugs available in the treatment of Glioma and among them Temozolomide (TMZ) has shown some effectiveness in treating Glioma patients, however, the rate of recovery remains poor due to the inability of this drug to act on the drug resistant tumor sub-populations. Hence, in this study three novel Acridone derivative drugs AC2, AC7, and AC26 have been proposed.

View Article and Find Full Text PDF

Telomerase has emerged as an important primary target in anticancer therapy. It is a distinctive reverse transcriptase enzyme, which extends the length of telomere at the 3' chromosomal end, and uses telomerase reverse transcriptase (TERT) and telomerase RNA template-containing domains. Telomerase has a vital role and is a contributing factor in human health, mainly affecting cell aging and cell proliferation.

View Article and Find Full Text PDF

Cell fusion is an integral, established phenomenon underlying various physiological processes in the cell cycle. Although research in cancer metastasis has hypothesised numerous molecular mechanisms and signalling pathways responsible for invasion and metastasis, the origin and progression of metastatic cells within primary tumours remains unclear. Recently, the role of cancer cell fusion in cancer metastasis and development of multidrug resistance (MDR) in tumours has gained prominence.

View Article and Find Full Text PDF

Drug latentiation is a process of modifying a drug molecule structurally to improve its binding affinity as well as increasing the drug-receptor interactions and potentiate its therapeutic potential. In the quest for discovering more potent epidermal growth factor receptor (EGFR) inhibitors, gefitinib-based derivatives were designed by simple structural modification at the secondary amine of gefitinib by N-alkylation. Three gefitinib derivatives (gefitinib-NB, -NP, and -NIP) were synthesized by N-alkylation and phase transfer catalysis.

View Article and Find Full Text PDF

Drug delivery systems are undergoing technology changes to enhance patient comfort and compliance. Electronic drug delivery (E-drug delivery) systems are being developed to regulate drug dose delivery by easy monitoring of doses, especially in chronic and age-related diseases. E-drug delivery can monitor the correct dose of anesthesia, could be used in GI tracking by E-capsules, in epilepsy, insulin drug delivery, cardiac ailments and cancer therapy.

View Article and Find Full Text PDF

The design and synthesis of novel pyrazole based derivatives has been carried out using the ligand based approach like pharmacophore and QSAR modelling of reported pyrazoles from the available literature to investigate the chemical features that are essential for the design of selective and potent COX-2 inhibitors. Both pharmacophore and QSAR models with good statistical parameters were selected for the design of the lead molecule. Also by exploiting the chemical structures of selective and marketed COX-2 inhibitors, celecoxib and SC-558 were used in designing the molecules which are used in the treatment of inflammation and related disorders.

View Article and Find Full Text PDF

Patients with chronic non-malignant pain report impairment of physical and social life along with psychological state affecting their overall quality of life. The purpose of managing pain is to reduce the trauma and improve the patient comfort with better quality of life. Tramadol is a centrally acting weak μ-opioid receptor analgesic and is a racemic mixture of (+)-tramadol and (-)-tramadol enantiomers.

View Article and Find Full Text PDF

Hybrid systems of acridones with substituted pyrimidines were designed with an objective of discovering next generation anticancer agents targeting multiple mechanisms in the cancer cell. Hybrid compounds were synthesized by simple and convenient methods in the lab, characterized by NMR and Mass spectral methods and screened for cytotoxicity against A549 (lung), Hela (cervical), MCF7 (breast) and MDA-MB-231 (breast) cancer cell lines respectively. Evaluation of compounds for cell proliferation identified active compounds 11b, 11d and 11h against MCF7, MDA-MB-231 and A549 cell lines.

View Article and Find Full Text PDF

Drug resistance in cancer is an unmet medical challenge and a major drawback for the failure of many chemotherapeutic drugs. Search for targeted, effective drug with minimum toxicity is an urgent need. Acridone which is an alkaloid derivative has been attributed as molecule in reversing drug resistance in cancer cells for a long time now.

View Article and Find Full Text PDF

Calmodulin inhibitors have proved to play a significant role in sensitizing MDR cancer cells by interfering with cellular drug accumulation. The present investigation focuses on the evaluation of in vitro inhibitory efficacy of chloro acridones against calmodulin dependent cAMP phosphodiesterase (PDE1c). Moreover, molecular docking of acridones was performed with PDE1c in order to identify the possible protein ligand interactions and results thus obtained were compared with in vitro data.

View Article and Find Full Text PDF

In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549).

View Article and Find Full Text PDF

A series of novel N(10)-substituted acridone derivatives bearing alkyl side-chain with tertiary amine groups at the terminal position were evaluated for their in vitro cytotoxic effects against drug sensitive and resistant cancer cell lines. All the molecules were designed on the basis of hydrogen bond acceptors, carbonyl, fluoro groups with precise spatial separation and structural features of lipophilicity, positive charge at neutral pH and presence of aromatic rings. The in vitro cytotoxic effects in comparison with reference drugs doxorubicin (DX) and C(1311) against cancer cell lines SW 1573, SW 1573 2R 160 (Pg-P expressing) which are non-small cell lung cancer cells, human embryo kidney cells HEK 293, HEK 293 MRP4, HEK 293 MRP5i, human promyelocytic leukemia sensitive cell line HL-60, including its multidrug cross-resistant of two main (P-gp and MRP) phenotype sublines vincristine resistant HL-60/VINC and doxorubicin resistant HL-60/DX cancer cell lines are presented.

View Article and Find Full Text PDF

A series of 2-fluoro N(10)-substituted acridone derivatives with varying alkyl side chain length with propyl, butyl substitution, and a tertiary amine group at the terminal end of the alkyl side chain were synthesized and screened against cancer cell lines SW 1573, SW 1573 2R 160 (P-gp substrate) which are non-small lung cancer cell lines, MCF-7, MCF-7/MR (BCRP substrate) are breast cancer cell lines, 2008 WT, 2008MRP1, 2008MRP2, 2008MRP3 are ovarian cancer cell lines, and human embryo kidney cell lines like HEK293, HEK293 MRP4, and HEK293 MRP5i. The propyl-series compounds showed lipophilicity in the range of 1.93 to 4.

View Article and Find Full Text PDF

Over the past two decades, a number of chemical entities have been investigated in the continuing quest to reverse P-glycoprotein (P-gp) mediated multidrug resistance (MDR) in cancer cells and some have undergone clinical trials, but currently none are in clinical use. Unfortunately, most of these agents suffer clinically from their intrinsic toxicity or from undesired effects on the pharmacokinetics of the accompanying anti-cancer drugs. An acridonecarboxamide (GF120918), Imidazo acridone (C(1311)) and timethylene acridone derivative 1,3-bis(9-oxoacridin-10-yl)-propane (PBA) have already been shown to be among the group of compounds known to modify P-gp mediated MDR in cancer.

View Article and Find Full Text PDF

A series of N10-substituted-2-methyl acridone derivatives are synthesized and are examined for its ability to reverse P-glycoprotein (P-gp) mediated multidrug resistance (MDR) in breast cancer cell lines MCF-7 and MCF-7/Adr. The structural requirement of in-vitro anti-cancer and reversal of drug resistance are studied. The results showed that compound 16 with four carbon spacer exhibited promising in-vitro anti-cancer and reversal of drug resistance in comparison to the other analogues.

View Article and Find Full Text PDF

We report herein in vitro anti-proliferative activity and duplex DNA complex studies of a series of N10-substituted acridone derivatives. All the molecules have been designed on the basis of the presence of specific recognition patterns consisting of hydrogen bond acceptors (or electron donors), carbonyl, chloro groups with precise spatial separation and structural features (lipophilicity, positive charge at neutral pH and presence of aromatic rings). The in vitro cytotoxic effects have been demonstrated against human promyelocytic leukemia sensitive cell line (HL-60), including its multidrug cross-resistance of two main (P-gp and MRP) phenotype sublines vincristine-resistant (HL-60/VINC) and doxorubicin-resistant (HL-60/DX) cancer cell lines.

View Article and Find Full Text PDF

Calmodulin is a Ca2+ binding protein found in many eukaryotic cells. It is one of the most important intracellular mediators of Ca2+-dependant signaling in eukaryotic cells. It regulates diverse processes including mitosis, muscle contraction and nucleotide metabolism by modulating the activity of at least 30 different target enzymes in a calcium-dependant manner.

View Article and Find Full Text PDF

Multidrug resistance (MDR) of cancer cells remains to be an important cause of chemotherapy failure. Search for the new MDR reversal agents is still an unceasing challenge for the scientists. In an attempt to find clinically useful modulators of MDR, a series of 19 N(10)-substituted-2-bromoacridones has been synthesized.

View Article and Find Full Text PDF