Lancet Reg Health Southeast Asia
November 2023
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that is activated by electrophilic irritants, oxidative stress, cold temperature, and GPCR signaling. TRPA1 expression has been primarily identified in subsets of nociceptive sensory afferents and is considered a target for future analgesics. Nevertheless, TRPA1 has been implicated in other cell types including keratinocytes, epithelium, enterochromaffin cells, endothelium, astrocytes, and CNS neurons.
View Article and Find Full Text PDFObjectives: Chikungunya is an arboviral illness, with patients presenting with fever, arthralgias, and myalgias. Outbreaks have occurred in tropical regions, and the virus is now endemic to many tropics, including South Asia, with India contributing a large part of the global burden. The presentation and long-term effects on transplant recipients are largely unknown.
View Article and Find Full Text PDFChemotherapeutic agent-induced nausea and vomiting are the severe adverse effects that are induced by their stimulations on the peripheral and/or central emetic nerve pathways. Even though ginger has been widely used as an herbal medicine to treat emesis, mechanisms underlying its neuronal actions are still less clear. The present study aimed to determine the chemotherapeutic agent vincristine-induced effect on gastroesophageal vagal afferent nerve endings and the potential inhibitory role of ginger constituent 6-shogaol on such response.
View Article and Find Full Text PDFBackground In India, donor eye collection and promotion of eye banking are insufficient to meet the needs. By adequately evaluating donor corneas, eye banks can maximize the number of viable corneas for transplantation. This study evaluated donor corneal tissue based on age, lens status, and cause of death by their morphology and endothelial cell count via slit lamp and specular microscopy.
View Article and Find Full Text PDFControlling the pore connectivity of polymer foams is key for most of their applications, ranging from liquid uptake, mechanics, and acoustic/thermal insulation to tissue engineering. Despite their importance, the scientific phenomena governing the pore-opening processes remain poorly understood, requiring tedious trial-and-error procedures for property optimization. This lack of understanding is partly explained by the high complexity of the different interrelated, multiscale processes which take place as the foam transforms from an initially fluid foam into a solid foam.
View Article and Find Full Text PDFThe K 1/D-type potassium current (I ) is an important determinant of neuronal excitability. This study explored whether and how I channels regulate the activation of bronchopulmonary vagal afferent nerves. The single-neuron RT-PCR assay revealed that nearly all mouse bronchopulmonary nodose neurons expressed the transcripts of α-dendrotoxin (α-DTX)-sensitive, I channel-forming K 1.
View Article and Find Full Text PDFThe airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm).
View Article and Find Full Text PDFAction potentials depend on voltage-gated sodium channels (Na1s), which have nine α subtypes. Na1 inhibition is a target for pathologies involving excitable cells such as pain. However, because Na1 subtypes are widely expressed, inhibitors may inhibit regulatory sensory systems.
View Article and Find Full Text PDFType I interferon receptors are expressed by the majority of vagal C-fibre neurons innervating the respiratory tract Interferon alpha and beta acutely and directly activate vagal C-fibers in the airways. The interferon-induced activation of C-fibers occurs secondary to stimulation of type 1 interferon receptors Type 1 interferons may contribute to the symptoms as well as the spread of respiratory viral infections by causing coughing and other defensive reflexes associated with vagal C-fibre activation ABSTRACT: We evaluated the ability of type I interferons to acutely activate airway vagal afferent nerve terminals in mouse lungs. Using single cell RT-PCR of lung-specific vagal neurons we found that IFNAR1 and IFNAR2 were expressed in 70% of the TRPV1-positive neurons (a marker for vagal C-fibre neurons) and 44% of TRPV1-negative neurons.
View Article and Find Full Text PDFMany clinical and preclinical studies report higher prevalence and severity of chronic pain in females. We used hyperalgesic priming with interleukin 6 (IL-6) priming and PGE as a second stimulus as a model for pain chronicity. Intraplantar IL-6 induced hypersensitivity was similar in magnitude and duration in both males and females, while both paw and intrathecal PGE hypersensitivity was more persistent in females.
View Article and Find Full Text PDFThe ATP-sensitive P2X ionotropic receptor plays a critical role in a number of signal processes including taste and hearing, carotid body detection of hypoxia, the exercise pressor reflex and sensory transduction of mechanical stimuli in the airways and bladder. Elucidation of the role of P2X has been hindered by the lack of selective tools. In particular, detection of P2X using established pharmacological and biochemical techniques yields dramatically different expression patterns, particularly in the peripheral and central nervous systems.
View Article and Find Full Text PDFVagal afferent sensory nerves, originating in jugular and nodose ganglia, are composed of functionally distinct subsets whose activation evokes distinct thoracic and abdominal reflex responses. We used Cre-expressing mouse strains to identify specific vagal afferent populations and map their central projections within the brainstem. We show that Pirt is expressed in virtually all vagal afferents; whereas, 5-HT3 is expressed only in nodose neurons, with little expression in jugular neurons.
View Article and Find Full Text PDFUnique features of sensory neuron subtypes are manifest by their distinct physiological and pathophysiological functions. Using patch-clamp electrophysiology, Ca imaging, calcitonin gene-related peptide release assay from tissues, protein biochemistry approaches, and behavioral physiology on pain models, this study demonstrates the diversity of sensory neuron pathophysiology is due in part to subtype-dependent sensitization of TRPV1 and TRPA1. Differential sensitization is influenced by distinct expression of inflammatory mediators, such as prostaglandin E (PGE), bradykinin (BK), and nerve growth factor (NGF) as well as multiple kinases, including protein kinase A (PKA) and C (PKC).
View Article and Find Full Text PDFMicrowaves are utilized for extraction of Phytoconstituents from complex herbal sample as a result of incredible research. Conventional extraction strategies are tedious and need more solvents and are no more relevant for thermal sensitive plant components. This review emphasize on the working and significance of microwave extraction technology in herbal research and medical field.
View Article and Find Full Text PDFMany clinical and preclinical studies report an increased prevalence and severity of chronic pain among females. Here, we identify a sex-hormone-controlled target and mechanism that regulates dimorphic pain responses. Prolactin (PRL), which is involved in many physiologic functions, induces female-specific hyperalgesia.
View Article and Find Full Text PDFSensory neurones exhibit sex-dependent responsiveness to prolactin (PRL). This could contribute to sexual dimorphism in pathological pain conditions. The present study aimed to determine the mechanisms underlying sex-dependent PRL sensitivity in sensory neurones.
View Article and Find Full Text PDFNeurogastroenterol Motil
June 2019
Background: Ginger has been used as an herbal medicine worldwide to relieve nausea/vomiting and gastrointestinal discomfort, but the cellular and molecular mechanisms of its neuronal action remain unclear. The present study aimed to determine the effects of ginger constituent 6-shogaol on gastroesophageal vagal nodose C-fibers.
Methods: Extracellular single-unit recording and two-photon nodose neuron imaging were performed, respectively, in ex vivo gastroesophageal-vagal preparations from wild type and Pirt-GCaMP6 transgenic mice.
Activation of vagal C-fibers is likely involved in some types of pathological coughing, especially coughing that is associated with airway inflammation. This is because stimulation of vagal C-fibers leads to strong urge to cough sensations, and because C-fiber terminals can be strongly activated by mediators associated with airway inflammation. The most direct manner in which a given mediator can activate a C-fiber terminal is through interacting with its receptor expressed in the terminal membrane.
View Article and Find Full Text PDFKey Points: Sphingosine-1-phosphate (S1P) strongly activates mouse vagal C-fibres in the airways. Airway-specific nodose and jugular C-fibre neurons express mRNA coding for the S1P receptor S1PR3. S1P activation of nodose C-fibres is inhibited by a S1PR3 antagonist.
View Article and Find Full Text PDFIncreased airway vagal sensory C-fiber activity contributes to the symptoms of inflammatory airway diseases. The KCNQ/Kv7/M-channel is a well-known determinant of neuronal excitability, yet whether it regulates the activity of vagal bronchopulmonary C-fibers and airway reflex sensitivity remains unknown. Here we addressed this issue using single-cell RT-PCR, patch clamp technique, extracellular recording of single vagal nerve fibers innervating the mouse lungs, and telemetric recording of cough in free-moving mice.
View Article and Find Full Text PDFPeptidergic sensory neurons play a critical role in nociceptive pathways. To precisely define the function and plasticity of sensory neurons in detail, new tools such as transgenic mouse models are needed. We employed electrophysiology and immunohistochemistry to characterize in detail dorsal root ganglion (DRG) neurons expressing an inducible CGRPcre-ER (CGRP-cre+); and compared them to DRG neurons expressing Nav1.
View Article and Find Full Text PDF