Due to the hierarchical organization of RNA structures and their pivotal roles in fulfilling RNA functions, the formation of RNA secondary structure critically influences many biological processes and has thus been a crucial research topic. This review sets out to explore the computational prediction of RNA secondary structure and its connections to RNA modifications, which have emerged as an active domain in recent years. We first examine the progression of RNA secondary structure prediction methodology, focusing on a set of representative works categorized into thermodynamic, comparative, machine learning, and hybrid approaches.
View Article and Find Full Text PDFDesigning faithful yet accurate AI models is challenging, particularly in the field of individual treatment effect estimation (ITE). ITE prediction models deployed in critical settings such as healthcare should ideally be (i) accurate, and (ii) provide faithful explanations. However, current solutions are inadequate: state-of-the-art black-box models do not supply explanations, post-hoc explainers for black-box models lack faithfulness guarantees, and self-interpretable models greatly compromise accuracy.
View Article and Find Full Text PDF