Publications by authors named "Mayur Katariya"

In this work a single glycerol-water mixture, determined to be most apt at 30% (wt/vol), was used to immobilize Drosophila samples as well as to create a liquid lens for smartphone magnification viewing. This provides the advantage of being able to observe immobilized insects directly in the field rather than in the laboratory. In order to avoid having bubbles in the liquid lens and immobilizing medium that hinder visibility, an approach was developed where a stable pendant drop is moved in tandem with the dispensing tip by gravity and stopped abruptly so that sufficient momentum is transferred to the drop for its dislodgement.

View Article and Find Full Text PDF

Superhydrophobic substrates facilitate low adhesion for biological liquid handling but are hampered by wetting state changes due to condensation. Here, meshed near-superhydrophobic substrates, that are easier to produce than two-tiered architecture substrates, are shown to provide good immunity to wetting state changes while imbuing high positional resistance to roll-off by tilting when tested with 5 and 10 μL volume drops (18° and 13° respectively) of human IgG antibodies in aqueous solution at both room temperature and 4 °C. Pneumatic actuation was applied to elicit horizontal drop movement over the near-SH surface without any fragmentation, wherein higher velocities can be achieved when smaller drops and higher air pressures are used (0.

View Article and Find Full Text PDF

The ability to conduct en-route centrifugation of samples improves quality and timeliness in the pre-analytical phase. This is demonstrated here on a quadcopter whereby the propellers were adapted to house and apply centrifugal forces to sample-containing capillary tubes instead of incorporating a centrifuge. Tests revealed the ability of the method to separate non-homogenized milk into a cream portion and a skim milk portion, and human whole blood into plasma, buffy coat, and red blood cell components.

View Article and Find Full Text PDF

Autonomous systems for sample transport to the laboratory for analysis can be improved in terms of timeliness, cost and error mitigation in the pre-analytical testing phase. Drones have been reported for outdoor sample transport but incorporating devices on them to attain homogenous mixing of reagents during flight to enhance sample processing timeliness is limited by payload issues. It is shown here that flipping maneuvers conducted with quadcopters are able to facilitate complete and gentle mixing.

View Article and Find Full Text PDF

Drops with larger volumes placed over a superhydrophobic (SH) surface with a hole do not fall through unless they are evaporated to a size that is small enough. This feature offers the ability to preconcentrate samples for biochemical analysis. In this work, the influence of pinning on the behavior of drops placed on a 0.

View Article and Find Full Text PDF

In this work, 2 μL water drops are placed on substrates that are created to have a circular hydrophilic region bounded by superhydrophobicity so that they exhibit high contact angles. When the substrate is translated by a linear stepper actuator, the random force components present in the actuator are shown to cause the drop to rock resonantly. When the substrate is translated downward at inclination angles of up to 6° with respect to the horizontal, the contact angle hysteresis increases progressively to a limiting condition.

View Article and Find Full Text PDF

We advance a scheme in which a liquid body on a stationary tip in contact with a rotating superhydrophobic surface is able to maintain resonance primarily from stick-slip events. With tip-to-surface spacing in the range 2.73 ≤ h < 2.

View Article and Find Full Text PDF

In this work, drop formation on a slightly inclined superhydrophobic substrate with liquid at various flow rates delivered through a semispherical well was investigated. Due to the initial dry well condition in the first drop produced, the inertial force from liquid filling allowed the well's edge hysteresis to be more readily breached, in which flow rates of 16 mL/min and above could create a jet that appeared to be able to "pierce" through the top of the semispherical drop without disrupting its form and growth very much. For subsequent drops, the well's edge hysteresis at flow rates of 14 mL/min and above helped to support an "egg" like form.

View Article and Find Full Text PDF