During nervous system development, neurons choose synaptic partners with remarkable specificity; however, the cell-cell recognition mechanisms governing rejection of inappropriate partners remain enigmatic. Here, we show that mouse retinal neurons avoid inappropriate partners by using the FLRT2-uncoordinated-5 (UNC5) receptor-ligand system. Within the inner plexiform layer (IPL), FLRT2 is expressed by direction-selective (DS) circuit neurons, whereas UNC5C/D are expressed by non-DS neurons projecting to adjacent IPL sublayers.
View Article and Find Full Text PDFThe Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a demyelinating disease caused by an auto-reactive immune system. Recent studies also demonstrated synapse dysfunctions in MS patients and MS mouse models. We previously observed decreased synaptic vesicle exocytosis in photoreceptor synapses in the EAE mouse model of MS at an early, preclinical stage.
View Article and Find Full Text PDFRod photoreceptor synapses use large, ribbon-type active zones for continuous synaptic transmission during light and dark. Since ribbons are physically connected to the active zones, we asked whether illumination-dependent changes of ribbons influence Cav1.4/RIM2 protein clusters at the active zone and whether these illumination-dependent effects at the active zone require the presence of the synaptic ribbon.
View Article and Find Full Text PDFIn the present study, we generated and characterized a splice site-specific monoclonal antibody that selectively detects the calcineurin-binding dynamin1 splice variant dynamin1xb. Calcineurin is a Ca-regulated phosphatase that enhances dynamin1 activity and is an important Ca-sensing mediator of homeostatic synaptic plasticity in neurons. Using this dynamin1xb-specific antibody, we found dynamin1xb highly enriched in synapses of all analyzed brain regions.
View Article and Find Full Text PDFMutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon.
View Article and Find Full Text PDFRibbon synapses are tonically active synapses in the retina and inner ear with intense vesicle traffic. How this traffic is organized and regulated is still unknown. Synaptic ribbons, large presynaptic structures associated with numerous synaptic vesicles, appear to be essential for this process.
View Article and Find Full Text PDF