Estrogen deficiency-induced obesity has a high risk of visceral fat accumulation and body weight gain. It is also associated with many adverse health conditions. Taheebo extract from Tabebuia avellanedae has been recognized as playing several biological and pharmacological roles.
View Article and Find Full Text PDFMouse CD1d-restricted Valpha14 NKT cells are a unique subset of lymphocytes, which play important roles in immune regulation, tumor surveillance and host defense against pathogens. DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster myoblast city, is critical for lymphocyte migration and regulates T cell responsiveness through immunological synapse formation, yet its role in Valpha14 NKT cells remains unknown. We found that DOCK2 deficiency causes marked reduction of Valpha14 NKT cells in the thymus, liver, and spleen.
View Article and Find Full Text PDFClearance of apoptotic cells by macrophages is considered important for prevention of inflammatory responses leading to tissue damage. The phosphatidylserine receptor (PSR), which specifically binds to phosphatidylserine (PS) exposed on the surface of apoptotic cells, mediates uptake of apoptotic cells in vitro, yet the physiologic relevance of PSR remains unknown. This issue was addressed by generating PSR-deficient (PSR(-/-)) mice.
View Article and Find Full Text PDFDOCK2 is a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City which are known to regulate actin cytoskeleton. DOCK2 is critical for lymphocyte migration, yet the role of DOCK2 in TCR signaling remains unclear. We show here that DOCK2 is essential for TCR-mediated Rac activation and immunological synapse formation.
View Article and Find Full Text PDFAlthough the migratory property of lymphocytes is critical for protective immunity, tissue infiltration of lymphocytes sometimes causes harmful immune responses. DOCK2 plays a critical role in lymphocyte migration by regulating actin cytoskeleton through Rac activation, yet the mechanism by which DOCK2 activates Rac remains unknown. We found that DOCK2 associates with engulfment and cell motility (ELMO1) through its Src-homology 3 (SH3) domain.
View Article and Find Full Text PDF