A modified alpha-N-acetylgalactosaminidase (NAGA) with alpha-galactosidase A (GLA)-like substrate specificity was designed on the basis of structural studies and was produced in Chinese hamster ovary cells. The enzyme acquired the ability to catalyze the degradation of 4-methylumbelliferyl-alpha-D-galactopyranoside. It retained the original NAGA's stability in plasma and N-glycans containing many mannose 6-phosphate (M6P) residues, which are advantageous for uptake by cells via M6P receptors.
View Article and Find Full Text PDFThe relationship between the expression level of putative drug resistance factors and sensitivity to anticancer drugs in human normal renal proximal tubule epithelial cells (RPTEC) and 3 kinds of renal cell carcinoma (RCC) cells, VMRC-RCW (RCW), OS-RC-2 (OS2), TUHR14TKB (14TKB), was examined. RPTEC exhibited high expression of P-glycoprotein (Pgp), gamma-glutamyl cysteine synthetase (gammaGCS) and cis-diamminedichloroplatinum (II) (CDDP) resistance-related gene 9 (CRR9), low expression of vacuolar ATPase (V-ATPase) and no expression of multidrug resistance-associated protein 1 (MRP1). 14TKB exhibited high expression of gammaGCS and CRR9, low expression of Pgp and V-ATPase, and no expression of MRP1.
View Article and Find Full Text PDF