Publications by authors named "Mayukh Bhadra"

Synthetic side-on peroxide-bound dicopper(II) () complexes are important for understanding the active site structure/function of many copper-containing enzymes. This work highlights the formation of new {Cu(μ-η:η-O)Cu} complexes (with electronic absorption and resonance Raman (rR) spectroscopic characterization) using tripodal NArOH ligands at -135 °C, which spontaneously participate in intramolecular phenolic H-atom abstraction (HAA). This results in the generation of bis(phenoxyl radical)bis(μ-OH)dicopper(II) intermediates, substantiated by their EPR/UV-vis/rR spectroscopic signatures and crystal structural determination of a diphenoquinone dicopper(I) complex derived from ligand -C═C coupling.

View Article and Find Full Text PDF

Transition-metal-mediated reductive coupling of nitric oxide (NO) to nitrous oxide (NO) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO reductive coupling at a copper-ion center, [(tmpa)Cu(MeCN)] () {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing to NO leads to a new binuclear hyponitrite intermediate [{(tmpa)Cu}(μ-NO)] (), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ-O,O'--[(tmpa)Cu(μ-NO)] () complex.

View Article and Find Full Text PDF

The central role of cupric superoxide intermediates proposed in hormone and neurotransmitter biosynthesis by noncoupled binuclear copper monooxygenases like dopamine-β-monooxygenase has drawn significant attention to the unusual methionine ligation of the Cu ("Cu") active site characteristic of this class of enzymes. The copper-sulfur interaction has proven critical for turnover, raising still-unresolved questions concerning Nature's selection of an oxidizable Met residue to facilitate C-H oxygenation. We describe herein a model for Cu, [(NS)Cu] ([]), and its O-bound analog [(NS)Cu(O)] ([·O]).

View Article and Find Full Text PDF

Cu(I) active sites in metalloproteins are involved in O activation, but their O reactivity is difficult to study due to the Cu(I) d closed shell which precludes the use of conventional spectroscopic methods. Kβ X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kβ XES in probing Cu(I) sites in model complexes and a metalloprotein.

View Article and Find Full Text PDF

A cuprous chelate bearing a secondary sphere hydrogen bonding functionality, [(PV-tmpa)Cu], transforms NO to NO in high-yields in methanol. Ligand derived proton transfer facilitates N-O bond cleavage of a putative hyponitrite intermediate releasing NO, underscoring the crucial balance between H-bonding capabilities and acidities in (bio)chemical NO coupling systems.

View Article and Find Full Text PDF
Article Synopsis
  • The reaction involves -cyano-,-dimethylaniline-oxide, which donates oxygen atoms, interacting with copper(I) complexes in acetone to form a copper oxyl species.
  • This copper oxyl species is considered a crucial intermediate in the catalytic process of copper-containing monooxygenases, enzymes that facilitate oxidation reactions.
  • The main products of the reaction are -cyano--hydroxymethyl--methylaniline and -cyano--methylaniline, demonstrating the system's ability to break strong C-H bonds, which typically require a lot of energy to dissociate.
View Article and Find Full Text PDF

The dioxygen reactivity of a series of TMPA-based copper(I) complexes (TMPA=tris(2-pyridylmethyl)amine), with and without secondary-coordination-sphere hydrogen-bonding moieties, was studied at -135 °C in 2-methyltetrahydrofuran (MeTHF). Kinetic stabilization of the H-bonded [( TMPA)Cu (O )] cupric superoxide species was achieved, and they were characterized by resonance Raman (rR) spectroscopy. The structures and physical properties of [( TMPA)Cu (N )] azido analogues were compared, and the O reactivity of ligand-Cu complexes when an H-bonding moiety is replaced by a methyl group was contrasted.

View Article and Find Full Text PDF

[(L)Cu(O)] (i.e., cupric-superoxo) complexes, as the first and/or key reactive intermediates in (bio)chemical Cu-oxidative processes, including in the monooxygenases PHM and DβM, have been systematically stabilized by intramolecular hydrogen bonding within a TMPA ligand-based framework.

View Article and Find Full Text PDF

The present article describes novel oxidative protocols for direct esterification of alcohols. The protocols involve successful demonstrations of both "cross" and "self" esterification of a wide variety of alcohols. The cross-esterification proceeds under a simple transition-metal-free condition, containing catalytic amounts of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/TBAB (tetra-n-butylammonium bromide) in combination with oxone (potassium peroxo monosulfate) as the oxidant, whereas the self-esterification is achieved through simple induction of Fe(OAc)2 /dipic (dipic=2,6-pyridinedicarboxylic acid) as the active catalyst under an identical oxidizing environment.

View Article and Find Full Text PDF