Publications by authors named "Mayssa Hachem"

Docosahexaenoic acid (DHA, C22:6 n-3), a predominant omega-3 polyunsaturated fatty acid in brain, plays a vital role in cerebral development and exhibits functions with potential therapeutic effects (synaptic function, neurogenesis, brain inflammation regulation) in neurodegenerative diseases. The most common approaches of studying the cerebral accretion and metabolism of DHA involve the use of stable or radiolabeled tracers. Although these methods approved kinetic modeling of ratios and turnovers for fatty acids, they are associated with excessive costs, restrictive studies, and singular dosing effects.

View Article and Find Full Text PDF

Several studies emphasized on the preventive and therapeutic potential of Docosahexaenoic Acid (DHA, 22:6n-3) supplementation in chronic and age-related disorders including neurodegenerative diseases. Researchers principally studied the cerebral accretion of Lysophosphatidylcholine (LysoPC-DHA), the furthermost vital Lysophospholipid-DHA (LysoPL-DHA) in blood plasma. Nevertheless, the cerebral bioavailability of other LysoPL-DHA forms including Lysophosphatidylethanolamine (LysoPE-DHA), and Lysophosphatidylserine (LysoPS-DHA) were not extensively examined even though their vital biological functions in the brain.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed the fatty acid composition in the eyes of Arabian sheep and camels, finding that the retina had the highest levels of DHA and AA, with notable differences between the two species.
  • * The research suggests that using ocular tissues from agri-food waste could be a sustainable method to produce beneficial fatty acids, impacting nutrition and healthcare.
View Article and Find Full Text PDF

Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development.

View Article and Find Full Text PDF

Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques.

View Article and Find Full Text PDF

In forensic investigations, forensic intelligence is required for illicit drug profiling in order to allow police officers and law enforcements to recognize crime developments and adjust their actions. In the present paper, we propose a novel framework for Digital Forensic Drug Intelligence (DFDI) by fusing digital forensic and drug profiling data through intelligent cycles, where a targeted and iterative collection of evidence from diverse sources is a core step in the process of drug profiling. Drug profiling data combined with digital data from seized devices collected, examined, and analyzed will allow authorities to generate valuable information about illicit drug trafficking routes and manufacturing.

View Article and Find Full Text PDF

The giant freshwater prawn (Macrobrachium rosenbergii) is a high-yielding prawn variety well-received worldwide due to its ability to adapt to freshwater culture systems. Macrobrachium rosenbergii is an alternative to shrimp typically obtained from marine and brackish aquaculture systems. However, the use of intensive culture systems can lead to disease outbreaks, particularly in larval and post-larval stages, caused by pathogenic agents such as viruses, bacteria, fungi, yeasts and protozoans.

View Article and Find Full Text PDF

Long-chain omega-3 fatty acids esterified in lysophosphatidylcholine (LPC-omega-3) are the most bioavailable omega-3 fatty acid form and are considered important for brain health. Lysophosphatidylcholine is a hydrolyzed phospholipid that is generated from the action of either phospholipase PLA or PLA. There are two types of LPC; 1-LPC (where the omega-3 fatty acid at the -2 position is acylated) and 2-LPC (where the omega-3 fatty acid at the -1 position is acylated).

View Article and Find Full Text PDF

In forensic chemistry, when investigating seized illicit drugs, the profiling or chemical fingerprinting of drugs is considered fundamental. This involves the identification, quantitation and categorization of drug samples into groups, providing investigative leads such as a common or different origin of seized samples. Further goals of drug profiling include the elucidation of synthetic pathways, identification of adulterants and impurities, as well as identification of a drug's geographic origin, specifically for plant-derived exhibits.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson's and Alzheimer's diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids' forms for potential prevention and treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

Coronavirus Disease 2019 or COVID-19 have infected till day 82,579,768 confirmed cases including 1,818,849 deaths, reported by World Health Organization WHO. COVID-19, originated by Severe Acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), contributes to respiratory distress in addition to neurological symptoms in some patients. In the current review, we focused on the neurological complications associated with COVID-19.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA, 22:6n-3) is the main omega-3 polyunsaturated fatty acid in brain tissues necessary for common brain growth and function. DHA can be provided to the body through two origins: an exogenous origin, from direct dietary intakes and an endogenous one, from the bioconversion of the essential α-linolenic acid (ALA, 18:3n-3) in the liver. In humans, the biosynthesis of DHA from its precursor ALA is very low.

View Article and Find Full Text PDF

AceDoPC is a structured glycerophospholipid that targets the brain with docosahexaenoic acid (DHA) and is neuroprotective in the experimental ischemic stroke. AceDoPC is a stabilized form of the physiological 2-DHA-LysoPC with an acetyl group at the position; preventing the migration of DHA from the to position. In this study we aimed to know the bioavailability of C-labeled DHA after oral intake of a single dose of C-AceDoPC, in comparison with C-DHA in triglycerides (TAG), using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to assess the C enrichment of DHA-containing lipids.

View Article and Find Full Text PDF

The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been reported in the brains of patients with neurodegenerative diseases.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is required for proper brain development and cerebral functions. While DHA deficiency in the brain was shown to be linked to the emergence of cerebral diseases, a dietary intake of omega-3 PUFA could prevent or attenuate neurologic disturbances linked with aging or neurodegenerative diseases. In this context, targeting the brain with DHA might offer great promise in developing new therapeutics for neurodegenerative diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Docosahexaenoic acid (DHA) is a crucial omega-3 fatty acid for brain development and function, highly concentrated in the brain and linked to cognitive processes.
  • Reduced DHA levels are observed in Alzheimer's disease patients, highlighting its potential role in preventing cognitive decline.
  • This review explores DHA's neuroprotective mechanisms in preventing Alzheimer's and other neurodegenerative conditions, influenced by disease progression and individual genetic factors.
View Article and Find Full Text PDF

Docosahexaenoic acid (DHA; 22:6 ω-3) is highly enriched in the brain and is required for proper brain development and function. Its deficiency has been shown to be linked with the emergence of neurological diseases. Dietary ω-3 fatty acid supplements including DHA have been suggested to improve neuronal development and enhance cognitive functions.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is the main essential omega-3 fatty acid in brain tissues required for normal brain development and function. An alteration of brain DHA in neurodegenerative diseases such as Alzheimer's and Parkinson's is observed. Targeted intake of DHA to the brain could compensate for these deficiencies.

View Article and Find Full Text PDF