Publications by authors named "Mayra Whittington"

Oncogene activation in tumor cells induces broad and complex cellular changes that contribute significantly to disease initiation and progression. In melanoma, oncogenic BRAF(V600E) has been shown to drive the transcription of a specific gene signature that can promote multiple mechanisms of immune suppression within the tumor microenvironment. We show here that BRAF(V600E) also induces rapid internalization of MHC class I (MHC-I) from the melanoma cell surface and its intracellular sequestration within endolysosomal compartments.

View Article and Find Full Text PDF

Purpose: Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF-mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors.

View Article and Find Full Text PDF

Purpose: In this study, we assessed the specific role of BRAF(V600E) signaling in modulating the expression of immune regulatory genes in melanoma, in addition to analyzing downstream induction of immune suppression by primary human melanoma tumor-associated fibroblasts (TAF).

Experimental Design: Primary human melanocytes and melanoma cell lines were transduced to express WT or V600E forms of BRAF, followed by gene expression analysis. The BRAF(V600E) inhibitor vemurafenib was used to confirm targets in BRAF(V600E)-positive melanoma cell lines and in tumors from melanoma patients undergoing inhibitor treatment.

View Article and Find Full Text PDF

Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-K(b) generate significantly augmented CTL responses to viral challenge.

View Article and Find Full Text PDF

Purpose: One of the most important rate-limiting steps in adoptive cell transfer (ACT) is the inefficient migration of T cells to tumors. Because melanomas specifically express the chemokines CXCL1 and CXCL8 that are known to facilitate the CXCR2-dependent migration by monocytes, our aim is to evaluate whether introduction of the CXCR2 gene into tumor-specific T cells could further improve the effectiveness of ACT by enhancing T-cell migration to tumor.

Experimental Design: In this study, we used transgenic pmel-1 T cells, which recognize gp100 in the context of H-2Db, that were transduced with luciferase gene to monitor the migration of transferred T cells in vivo.

View Article and Find Full Text PDF