Publications by authors named "Mayra Orellana"

Article Synopsis
  • MYC is a critical driver of cancer that enhances gene expression and increases RNA production, contributing to tumor growth and survival.
  • The study reveals that MYC triggers RNA degradation, leading to toxic byproducts that cause cancer cell death, indicating a new mechanism for targeting MYC-driven cancers.
  • Therapeutic strategies that intensify the breakdown of RNA could serve as effective treatments for aggressive cancers like triple-negative breast cancer (TNBC) that rely on MYC.
View Article and Find Full Text PDF

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer diagnosed in more than 200,000 women each year and is recalcitrant to targeted therapies. Although TNBCs harbor multiple hyperactive receptor tyrosine kinases (RTKs), RTK inhibitors have been largely ineffective in TNBC patients thus far. We developed a broadly effective therapeutic strategy for TNBC that is based on combined inhibition of receptors that share the negative regulator PTPN12.

View Article and Find Full Text PDF

MYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs.

View Article and Find Full Text PDF