Publications by authors named "Mayra C Cortez Alcaraz"

Magnesium (Mg) and its alloys are a class of promising materials for biodegradable orthopedic and craniomaxillofacial implants; however, rapid release of hydrogen gas remains a key challenge for clinical translation. This study reported the optimal parameters of electrophoretic deposition (EPD), at which magnesium oxide nanoparticles (nMgO) could be deposited onto Mg substrates with homogeneous surface morphology and elemental distribution. The results showed that the distribution and uniformity of the nMgO coatings on Mg improved when the nMgO concentration in ethanol increased and the time of applied voltage decreased.

View Article and Find Full Text PDF

Unlabelled: Magnesium (Mg) and its alloys have been widely investigated as the most promising biodegradable metals to replace conventional non-degradable metals for temporary medical implant applications. New Mg alloys have been developed for medical applications in recent years; and the concept of alloying Mg with less-toxic elements have aroused tremendous interests due to the promise to address the problems associated with rapid degradation of Mg without compromising its cytocompatibility and biocompatibility. Of particular interests for orthopedic/spinal implant applications are the additions of calcium (Ca) and strontium (Sr) into Mg matrix because of their beneficial properties for bone regeneration.

View Article and Find Full Text PDF

This article reports the degradation and biological properties of as-drawn Mg-4Zn-1Sr (designated as ZSr41) and pure Mg (P-Mg) wires as bioresorbable intramedullary pins for bone repair. Specifically, their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs) and degradation in vitro, and their biological effects on peri-implant tissues and in vivo degradation in rat tibiae were studied. The as-drawn ZSr41 pins showed a significantly faster degradation than P-Mg in vitro and in vivo.

View Article and Find Full Text PDF

Unlabelled: This article reports anodization of Mg in KOH electrolyte and the associated surface, degradation, and biological properties for bioresorbable implant applications. The preparation procedures for electrodes and anodization setup significantly enhanced reproducibility of samples. The results of anodization performed at the applied potentials of 1.

View Article and Find Full Text PDF

Unlabelled: Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15, 0.

View Article and Find Full Text PDF