Publications by authors named "Mayra A Carrillo"

Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed.

View Article and Find Full Text PDF

Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model.

View Article and Find Full Text PDF

A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses.

View Article and Find Full Text PDF

The human immunodeficiency virus (HIV-1) pandemic continues to spread unabated worldwide, and currently, there is no vaccine available against HIV. Although combinational antiretroviral therapy (cART) has been successful in suppressing viral replication, it cannot completely eradicate the reservoir from HIV-infected individuals. A safe and effective cure strategy for HIV infection will require multipronged methods, and therefore the advancements of animal models for HIV-1 infection are pivotal for the development of HIV cure research.

View Article and Find Full Text PDF

Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection.

View Article and Find Full Text PDF

The HIV reservoir remains to be a difficult barrier to overcome in order to achieve a therapeutic cure for HIV. Several strategies have been developed to purge the reservoir, including the "kick and kill" approach, which is based on the notion that reactivating the latent reservoir will allow subsequent elimination by the host anti-HIV immune cells. However, clinical trials testing certain classes of latency reactivating agents (LRAs) have so far revealed the minimal impact on reducing the viral reservoir.

View Article and Find Full Text PDF

HIV and cancer remain prevailing sources of morbidity and mortality worldwide. There are current efforts to discover novel therapeutic strategies for the treatment or cure of these diseases. Humanized mouse models provide the investigative tool to study the interaction between HIV or cancer and the human immune system .

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy for various forms of cancer and show promise in treating HIV-1 infection. However, significant limitations are persistence and whether peripheral T cell-based products can respond to malignant or infected cells that may reappear months or years after treatment remains unclear. Hematopoietic Stem/Progenitor Cells (HSPCs) are capable of long-term engraftment and have the potential to overcome these limitations.

View Article and Find Full Text PDF

Many chemosensory stimuli evoke innate behavioral responses that can be either appetitive or aversive, depending on an animal's age, prior experience, nutritional status, and environment [1-9]. However, the circuit mechanisms that enable these valence changes are poorly understood. Here, we show that Caenorhabditis elegans can alternate between attractive or aversive responses to carbon dioxide (CO), depending on its recently experienced CO environment.

View Article and Find Full Text PDF

HIV infection continues to be a life-long chronic disease in spite of the success of antiretroviral therapy (ART) in controlling viral replication and preventing disease progression. However, because of the high cost of treatment, severe side effects, and inefficiency in curing the disease with ART, there is a call for alternative therapies that will provide a functional cure for HIV. Cytotoxic T lymphocytes (CTLs) are vital in the control and clearance of viral infections and therefore immune-based therapies have attempted to engineer HIV-specific CTLs that would be able to clear the infection from the body.

View Article and Find Full Text PDF

Despite the success of combination antiretroviral therapy (cART) for suppressing HIV and improving patients' quality of life, HIV persists in cART-treated patients and remains an incurable disease. Financial burdens and health consequences of lifelong cART treatment call for novel HIV therapies that result in a permanent cure. Cellular immunity is central in controlling HIV replication.

View Article and Find Full Text PDF

Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood.

View Article and Find Full Text PDF

Sensory behaviors are often flexible, allowing animals to generate context-appropriate responses to changing environmental conditions. To investigate the neural basis of behavioral flexibility, we examined the regulation of carbon dioxide (CO2) response in the nematode Caenorhabditis elegans. CO2 is a critical sensory cue for many animals, mediating responses to food, conspecifics, predators, and hosts (Scott, 2011; Buehlmann et al.

View Article and Find Full Text PDF

Purpose: The goal of this study was to investigate the therapeutic potential of a novel immunotherapy strategy resulting in immunity to localized or metastatic human papillomavirus 16-transformed murine tumors.

Experimental Design: Animals bearing E7-expressing tumors were coimmunized by lymph node injection with E7 49-57 antigen and TLR3-ligand (synthetic dsRNA). Immune responses were measured by flow cytometry and antitumor efficacy was evaluated by tumor size and survival.

View Article and Find Full Text PDF

Elevated Programmed Death-1 (PD-1) expression can inhibit T cell activity and is a potential barrier to achieving persisting and optimal immunity via therapeutic vaccination. Using a direct lymph node-targeted vaccination procedure that enabled uncoupling of synthetic peptide (signal 1, TCR-mediated) and adjuvant (signal 2, non-TCR-mediated), we evaluated the impact of varied doses of Toll-like receptor (TLR)-9 ligand CpG oligodeoxynucleotide (ODN) adjuvant on epitope-specific CD8(+) T cell-associated PD-1 expression. Peptide vaccination without adjuvant yielded CD8(+) T cells with significantly elevated PD-1 expression.

View Article and Find Full Text PDF