Neuromorphic computing is a brain-inspired approach to hardware and algorithm design that efficiently realizes artificial neural networks. Neuromorphic designers apply the principles of biointelligence discovered by neuroscientists to design efficient computational systems, often for applications with size, weight and power constraints. With this research field at a critical juncture, it is crucial to chart the course for the development of future large-scale neuromorphic systems.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Introduction: Biliary tract cancer (BTC) comprises a clinically diverse and genetically heterogeneous group of tumors along the intra- and extrahepatic biliary system (intrahepatic and extrahepatic cholangiocarcinoma) and gallbladder cancer with the common feature of a poor prognosis, despite increasing molecular knowledge of associated genetic aberrations and possible targeted therapies. Therefore, the search for even more precise and individualized therapies is ongoing and preclinical tumor models are central to the development of such new approaches.
Areas Covered: The models described in the current review include simple and advanced in vitro and in vivo models, including cell lines, 2D monolayer, spheroid and organoid cultures, 3D bioprinting, patient-derived xenografts, and more recently, machine-perfusion platform-based models of resected liver specimens.
Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium.
View Article and Find Full Text PDFBiliary tract cancer (BTC) is a rare malignancy with rising incidence. The therapeutic options are limited and the overall survival remains poor. Cyclin-dependent kinases, drivers of cell cycle and transcription have numerous biological functions and are known to be dysregulated in numerous tumor entities.
View Article and Find Full Text PDFIntroduction: Multi-channel electrophysiology systems for recording of neuronal activity face significant data throughput limitations, hampering real-time, data-informed experiments. These limitations impact both experimental neurobiology research and next-generation neuroprosthetics.
Methods: We present a novel solution that leverages the high integration density of 22nm fully-depleted silicon-on-insulator technology to address these challenges.
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis.
View Article and Find Full Text PDFBackground And Purpose: The PDE4 family is considered a prime target for therapeutic intervention in several fibro-inflammatory diseases. We have investigated the molecular mechanisms of nerandomilast (BI 1015550), a preferential PDE4B inhibitor.
Experimental Approach: In addition to clinically relevant parameters of idiopathic pulmonary fibrosis (IPF; lung function measurement/high-resolution computed tomography scan/AI-Ashcroft score), whole-lung homogenates from a therapeutic male Wistar rat model of pulmonary fibrosis were analysed by next-generation sequencing (NGS).
Despite advancements in antifibrotic therapy, idiopathic pulmonary fibrosis (IPF) remains a medical condition with unmet needs. Single-cell RNA sequencing (scRNA-seq) has enhanced our understanding of IPF but lacks the cellular tissue context and gene expression localization that spatial transcriptomics provides. To bridge this gap, we profiled IPF and control patient lung tissue using spatial transcriptomics, integrating the data with an IPF scRNA-seq atlas.
View Article and Find Full Text PDFIt is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules.
View Article and Find Full Text PDFAlthough more than half of all genes generate transcripts that differ in 3'UTR length, current analysis pipelines only quantify the amount but not the length of mRNA transcripts. 3'UTR length is determined by 3' end cleavage sites (CS). We map CS in more than 200 primary human and mouse cell types and increase CS annotations relative to the GENCODE database by 40%.
View Article and Find Full Text PDF• This editorial provides a brief overview of the role of HDACs in diffuse large B-cell lymphoma (DLBCL). • Possible mechanisms of HDAC inhibitor resistance in DLBCL are discussed in detail. • It highlights the need for developing HDAC isoform-specific inhibitors.
View Article and Find Full Text PDFIntroduction: Biliary tract cancer (BTC) is a lethal disease with a bad overall survivability, partly arising from inadequate therapeutic alternatives, detection at a belated stage, and a resistance to common therapeutic approaches. Ferroptosis is a form of programmed cell death that depends on reactive oxygen species (ROS) and iron, causing excessive peroxidation of polyunsaturated fatty acids (PUFAs). Therefore, the objective of this investigation is, whether ferroptosis can be induced in BTC in vitro and whether this induction is dependent on specific molecular markers.
View Article and Find Full Text PDFBackground: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown.
Methods: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events.
Results: Endothelial ablation of leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation.
Background: Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear.
Methods: We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration.
The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments.
View Article and Find Full Text PDFPulmonary fibrosis develops as a consequence of failed regeneration after injury. Analyzing mechanisms of regeneration and fibrogenesis directly in human tissue has been hampered by the lack of organotypic models and analytical techniques. In this work, we coupled ex vivo cytokine and drug perturbations of human precision-cut lung slices (hPCLS) with single-cell RNA sequencing and induced a multilineage circuit of fibrogenic cell states in hPCLS.
View Article and Find Full Text PDFAutoimmunity plays a role in certain types of lung fibrosis, notably connective tissue disease-associated interstitial lung disease (CTD-ILD). In idiopathic pulmonary fibrosis (IPF), an incurable and fatal lung disease, diagnosis typically requires clinical exclusion of autoimmunity. However, autoantibodies of unknown significance have been detected in IPF patients.
View Article and Find Full Text PDFIt is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the FXR1 network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as underlying condensate scaffold and concentrate FXR1 molecules.
View Article and Find Full Text PDFBranched glycerol dialkyl glycerol tetraethers (brGDGTs) are common in lake sediments, where they are frequently employed to infer mean annual air temperatures (MAAT) or air temperatures of months above freezing (MAF) using the MBT' lipid paleothermometer. The reliable reconstruction of such temperatures, however, requires robust calibration functions. Here, we investigated brGDGT distributions in surface sediments from 41 freshwater lakes located along an altitudinal gradient across the Alps (Central Europe) and spanning a MAAT range from 1.
View Article and Find Full Text PDFThe potential low-energy feature of the spiking neural network (SNN) engages the attention of the AI community. Only CPU-involved SNN processing inevitably results in an inherently long temporal span in the cases of large models and massive datasets. This study introduces the MAC array, a parallel architecture on each processing element (PE) of SpiNNaker 2, into the computational process of SNN inference.
View Article and Find Full Text PDFBleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis. Yet in this model, it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging.
View Article and Find Full Text PDFBiliary tract cancer is a deadly disease with limited therapeutic options. Ouabain is a well-known inhibitor of the pumping function of Na+/K+-ATPase, though there is evidence that low concentrations of ouabain lead to a reduction of cell viability of cancer cells independent of its inhibition of the pumping function of the Na+/K+-ATPase. Regarding the impact of ouabain on biliary tract cancer, no data is currently available.
View Article and Find Full Text PDFSingle-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population.
View Article and Find Full Text PDF