Int J Environ Res Public Health
December 2024
Background: Migrant construction workers involved in building infrastructure for mega-sporting events face elevated risks of illness and death. However, specific health outcomes for these workers have not been systematically reviewed, limiting opportunities to identify and address their challenges.
Methods: This study systematically reviewed health outcomes among migrant construction workers involved in mega-sporting events.
In this issue of Molecular Cell, Chang et al. elaborate on the mechanisms by which CAT tail aggregation is mediated through threonine residues and how it contributes to the perturbation of proteostasis.
View Article and Find Full Text PDFThe initial delivery of small-scale magnetic devices such as microrobots is a key, but often overlooked, aspect for their use in clinical applications. The deployment of these devices within the dynamic environment of the human body presents significant challenges due to their dispersion caused by circulatory flows. Here, a method is introduced to effectively deliver a swarm of magnetic nanoparticles in fluidic flows.
View Article and Find Full Text PDFAncient lakes are hotspots of species diversity, posing challenges and opportunities for exploration of the dynamics of endemic diversification. Lake Baikal in Siberia, the oldest lake in the world, hosts a particularly rich crustacean fauna, including the largest known species flock of harpacticoid copepods with some 70 species. Here, we focused on exploring the diversity and evolution within a single nominal species, Sars, 1908, using molecular markers (mitochondrial COI, nuclear ITS1 and 28S rRNA) and a set of qualitative and quantitative morphological traits.
View Article and Find Full Text PDFOne of the oldest complete suits of European armour was discovered in 1960 near the village of Dendra, in Southern Greece, but it remained unknown whether this armour was suitable for extended use in battle or was purely ceremonial. This had limited our understanding of the ancient Greek-Late Bronze Age-warfare and its consequences that have underpinned the social transformations of prehistoric Europe and Eastern Mediterranean. In a series of archeo-physiological studies, merging knowledge in archaeology, history, human physiology, and numerical simulation, we provide supporting evidence that the Mycenaean armour found at Dendra was entirely compatible with use in extended combat, and we provide a free software enabling simulation of Late Bronze Age warfare.
View Article and Find Full Text PDFThe yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2023
During aging, the cellular response to unfolded proteins is believed to decline, resulting in diminished proteostasis. In model organisms, such as proteostatic decline with age has been linked to proteome solubility shifts and the onset of protein aggregation. However, this correlation has not been extensively characterized in aging mammals.
View Article and Find Full Text PDFThe use of beneficial microbes, i.e., probiotics, to reduce pathogens and promote the performance of the target species is an important management strategy in mariculture.
View Article and Find Full Text PDFResearch in the field of biochemistry and cellular biology has entered a new phase due to the discovery of phase separation driving the formation of biomolecular condensates, or membraneless organelles, in cells. The implications of this novel principle of cellular organization are vast and can be applied at multiple scales, spawning exciting research questions in numerous directions. Of fundamental importance are the molecular mechanisms that underly biomolecular condensate formation within cells and whether insights gained into these mechanisms provide a gateway for accurate predictions of protein phase behavior.
View Article and Find Full Text PDFSome newly translated proteins are more susceptible to misfolding and aggregation upon heat shock in comparison to other proteins. To study these newly translated thermo-sensitive proteins on a proteomic scale, we present here a protocol that combines pulse-SILAC with biochemical fractionation for mass spectrometry analysis, followed by an orthogonal validation protocol for selected candidates using the GAL promoter system in Saccharomyces cerevisiae. This approach can be further developed to study other stresses and specific post-translational modifications or adapted to mammalian cells.
View Article and Find Full Text PDFThermal discomfort due to accumulated sweat increasing head skin wettedness may contribute to low wearing rates of bicycle helmets. Using curated data on human head sweating and helmet thermal properties, a modelling framework for the thermal comfort assessment of bicycle helmet use is proposed. Local sweat rates (LSR) at the head were predicted as the ratio to the gross sweat rate (GSR) of the whole body or by sudomotor sensitivity (SUD), the change in LSR per change in body core temperature (Δt).
View Article and Find Full Text PDFControl over the functionalization of graphenic materials is key to enable their full application in electronic and optical technologies. Covalent functionalization strategies have been proposed as an approach to tailor the interfaces' structure and properties. However, to date, none of the proposed methods allow for a covalent functionalization with control over the grafting density, layer thickness and/or morphology, which are key aspects for fine-tuning the processability and performance of graphenic materials.
View Article and Find Full Text PDFAccurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured.
View Article and Find Full Text PDFThe accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein-protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration.
View Article and Find Full Text PDFEnrichment of detergent insoluble proteins is a commonly used technique for analyzing proteins that may be aggregating in disease or with age. However, various methods for enriching for these proteins are used. Here we present a method using a mild detergent (Triton X-100) and high centrifugation speed (20,000 × g) allowing for sufficient protein extraction and enrichment for large protein assemblies.
View Article and Find Full Text PDFPhase separation-based condensate formation is a novel working paradigm in biology, helping to rationalize many important cellular phenomena including the assembly of membraneless organelles. Uncovering the functional impact of cellular condensates requires a better knowledge of these condensates' constituents. Herein, we introduce the webserver GraPES (Granule Protein Enrichment Server), a user-friendly online interface containing the MaGS and MaGSeq predictors, which provide propensity scores for proteins' localization into cellular condensates.
View Article and Find Full Text PDFHomochirality is a fundamental feature of living systems, and its origin is still an unsolved mystery. Previous investigations showed that external physical forces can bias a spontaneous symmetry breaking process towards deterministic enantioselection. But can the macroscopic shape of a reactor play a role in chiral symmetry breaking processes? Here we show an example of chirality transfer from the chiral shape of a 3D helical channel to the chirality of supramolecular aggregates, with the handedness of the helical channel dictating the direction of enantioselection in the assembly of an achiral molecule.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2021
To date, crystallization studies conducted in space laboratories, which are prohibitively costly and unsuitable to most research laboratories, have shown the valuable effects of microgravity during crystal growth and morphogenesis. Herein, an easy and highly efficient method is shown to achieve space-like experimentation conditions on Earth employing custom-made microfluidic devices to fabricate 2D porous crystalline molecular frameworks. It is confirmed that experimentation under these simulated microgravity conditions has unprecedented effects on the orientation, compactness and crack-free generation of 2D porous crystalline molecular frameworks as well as in their integration and crystal morphogenesis.
View Article and Find Full Text PDFProtein aggregation is indicative of failing protein quality control systems. These systems are responsible for the refolding or degradation of aberrant and misfolded proteins. Heat stress can cause proteins to misfold, triggering cellular responses including a marked increase in the ubiquitination of proteins.
View Article and Find Full Text PDFStress granules (SGs) are stress-induced membraneless condensates that store non-translating mRNA and stalled translation initiation complexes. Although metazoan SGs are dynamic compartments where proteins can rapidly exchange with their surroundings, yeast SGs seem largely static. To gain a better understanding of yeast SGs, we identified proteins that sediment after heat shock using mass spectrometry.
View Article and Find Full Text PDFIn this issue of Molecular Cell, Vonk et al. (2020) and Thiruvalluvan et al. (2020) identify key chaperones that confer resistance to protein aggregation in neural stem cells and become reduced upon differentiation.
View Article and Find Full Text PDFRecently generated proteomic data provides unprecedented insight into stress granule composition and stands as fruitful ground for further analysis. Stress granules are stress-induced biological assemblies that are of keen interest due to being linked to both long-term cell viability and a variety of protein aggregation-based diseases. Herein, we compile recently published stress granule composition data, formed specifically through heat and oxidative stress, for both mammalian (Homo sapiens) and yeast (Saccharomyces cerevisiae) cells.
View Article and Find Full Text PDFCellular processes accompanying protein aggregation are diverse and entangled, making it difficult to investigate the underlying molecular processes in a time-resolved way. Gottlieb, Thompson, and colleagues address this shortcoming using a chemical biology approach to monitor ubiquitination within the first 10 min after the initiation of protein aggregation. Intriguingly, unfolding rather than aggregation seems to trigger the observed events.
View Article and Find Full Text PDF