Publications by authors named "Mayor M"

This work explores the use of a cross-shaped organic framework that is used as a template for the investigation of multi-functionalized chromophores. We report the design and synthesis of a universal cross-shaped building block bearing two bromines and two iodines on its peripheral positions. The template can be synthesized on a gram scale in a five-step reaction comprising an oxidative homo-coupling macro-cyclization.

View Article and Find Full Text PDF

Quantum interference plays an important role in charge transport through single-molecule junctions, even at room temperature. Of special interest is the measurement of the destructive quantum interference dip itself. Such measurements are especially demanding when performed in a continuous mode of operation.

View Article and Find Full Text PDF
Article Synopsis
  • Matter-wave interferometry with molecules showcases a key quantum phenomenon and has potential for advanced measurements in physical chemistry.
  • A major challenge is developing efficient beam splitting methods that can work with a variety of particles.
  • This research focuses on using intense deep-ultraviolet light to better understand interactions that could lead to new techniques in protein interferometry and enhanced sensing of molecular properties.
View Article and Find Full Text PDF

The bottom-up synthesis of carbon nanotubes (CNTs) is a long-standing goal in synthetic chemistry. Producing CNTs with defined lengths and diameters would render these materials and thus their fascinating properties accessible in a controlled way. Inspired by a recently reported synthesis of armchair graphene sheets that relied on a benzannulation and Scholl oxidation of a poly(p-phenylene ethynylene), the same strategy is applied on a cyclic substrate with a short, but well defined CNT as target structure.

View Article and Find Full Text PDF

This works describes a new step into the assembly of molecular textiles by the use of covalent templating. To establish a well-founded base and to tackle pre-mature obstacles, expected during the fabrication of the desired 2D-material, we opted to investigate the in-solution synthesis of molecular patches e. g.

View Article and Find Full Text PDF

The addition of a sulfhydryl group to water-soluble -alkyl(-nitrostyryl)pyridinium ions (NSPs) followed by fast and irreversible cyclization and aromatization results in a stable S-C sp-bond. The reaction sequence, termed Click & Lock, engages accessible cysteine residues under the formation of -hydroxy indole pyridinium ions. The accompanying red shift of >70 nm to around 385 nm enables convenient monitoring of the labeling yield by UV-vis spectroscopy at extinction coefficients of ≥2 × 10 M cm.

View Article and Find Full Text PDF

By integrating a tailor-made donor-acceptor (D-A) ligand in a metal-organic framework (MOF), a material with unprecedented features emerges. The ligand combines a pair of cyano groups as acceptors with four sulfanylphenyls as donors, which expose each a carboxylic acid as coordination sites. Upon treatment with zinc nitrate in a solvothermal synthesis, the MOF is obtained.

View Article and Find Full Text PDF

Background: Adolescents and young adults in residential care and correctional institutions face various challenges, leading to negative life outcomes. Implementation barriers within these institutions, such as limited financial and spatial resources, pose significant hurdles to providing necessary support. Web-based approaches address these challenges by offering cost-effective, accessible solutions.

View Article and Find Full Text PDF
Article Synopsis
  • Break-junction techniques help examine the electric and thermoelectric properties of single-molecule junctions by breaking metallic contacts to create those junctions while tracking conductance.
  • This study compares mechanically controllable break junction (MCBJ) and scanning tunneling microscope (STM) methods on novel naphtalenophane compounds, finding similar conductance results, but STM-BJ shows slightly higher values.
  • Thermopower measurements indicate that while the Seebeck coefficients are similar for both methods, the Seebeck coefficient increases as conductance decreases, tying these changes to the molecule-electrode interactions.
View Article and Find Full Text PDF

The addition of a lateral alkyl chain is a well-known strategy to reduce π-stacked ensembles of molecules in solution, with the intention to minimize the interactions between the molecules' backbones. In this paper, we study whether this concept generalizes to single-molecule junctions by using a combination of mechanically controllable break junction (MCBJ) measurements and clustering-based data analysis with two small series of model compounds decorated with various bulky groups. The systematic study suggests that introducing alkyl side chains also favors the formation of electrode-molecule configurations that are not observed in their absence, thereby inducing broadening of the conductance peak in the one-dimensional histograms.

View Article and Find Full Text PDF

Chiral organic molecules possessing high quantum yields, circular dichroism, and circularly polarized luminescence values have great potential as optically active materials for future applications. Recently, the identification of a promising class of inherently chiral compounds was reported, namely macrocyclic 1,3-butadiyne-linked pseudo-meta[2.2]paracyclophanes, displaying high circular dichroism and related g values albeit modest quantum yields.

View Article and Find Full Text PDF

Control over the electrical contact to an individual molecule is one of the biggest challenges in molecular optoelectronics. The mounting of individual chromophores on extended tripodal scaffolds enables both efficient electrical and mechanical decoupling of individual chromophores from metallic leads. Core-substituted naphthalene diimides fixed perpendicular to a gold substrate by a covalently attached extended tripod display high stability with well-defined and efficient electroluminescence down to the single-molecule level.

View Article and Find Full Text PDF

The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry.

View Article and Find Full Text PDF

Artificial synapses combining multiple yet independent signal processing strategies in a single device are key enabler to achieve high-density of integration, energy efficiency, and fast data manipulation in brain-like computing. By taming functional complexity, the use of hybrids comprising multiple materials as active components in synaptic devices represents a powerful route to encode both short-term potentiation (STP) and long-term potentiation (LTP) in synaptic circuitries. To meet such a grand challenge, herein a novel Janus 2D material is developed by dressing asymmetrically the two surfaces of 2D molybdenum disulfide (MoS ) with an electrochemically-switchable ferrocene (Fc)/ ferrocenium (Fc ) redox couple and an optically-responsive photochromic azobenzene (Azo).

View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates how isolating biomolecules in a high vacuum allows for experiments on delicate molecules without interference.
  • Researchers designed and synthesized photoactive molecular tags that let scientists control the charge on biopolymers using light, specifically with green photons at a wavelength of 532 nm.
  • The tags can be accurately removed when needed, proving effective in both solution and gas phase, showcasing strong potential for studying real proteins and other biomolecules.
View Article and Find Full Text PDF

Infiltration of tumor by T cells is a prerequisite for successful immunotherapy of solid tumors. In this study, we investigate the influence of tumor-targeted radiation on chimeric antigen receptor (CAR) T-cell therapy tumor infiltration, accumulation, and efficacy in clinically relevant models of pleural mesothelioma and non-small cell lung cancers. We use a nonablative dose of tumor-targeted radiation prior to systemic administration of mesothelin-targeted CAR T cells to assess infiltration, proliferation, antitumor efficacy, and functional persistence of CAR T cells at primary and distant sites of tumor.

View Article and Find Full Text PDF

Microfluidic systems are widely used in fundamental research and industrial applications due to their unique behavior, enhanced control, and manipulation opportunities of liquids in constrained geometries. In micrometer-sized channels, electric fields are efficient mechanisms for manipulating liquids, leading to deflection, injection, poration or electrochemical modification of cells and droplets. While PDMS-based microfluidic devices are used due to their inexpensive fabrication, they are limited in terms of electrode integration.

View Article and Find Full Text PDF

Deep parallel sequencing (NGS) is a viable tool for monitoring scFv and Fab library dynamics in many antibody engineering high-throughput screening efforts. Although very useful, the commonly used Illumina NGS platform cannot handle the entire sequence of scFv or Fab in a single read, usually focusing on specific CDRs or resorting to sequencing VH and VL variable domains separately, thus limiting its utility in comprehensive monitoring of selection dynamics. Here we present a simple and robust method for deep sequencing repertoires of full length scFv, Fab and Fv antibody sequences.

View Article and Find Full Text PDF

A molecular cage encapsulating gold nanoparticles is presented. Six benzylic thioethers are pointing into its cavity, stabilizing the particles in a 1 : 1 ligand-to-particle-ratio in excellent yields. They are bench-stable for several months and can withstand unprecedented thermal stress of up to 130 °C, documenting the advantages of the cage-type stabilization over open-chain analogues.

View Article and Find Full Text PDF

Stacked organic optoelectronic devices make use of electrode materials with different work functions, leading to efficient large area light emission. In contrast, lateral electrode arrangements offer the possibility to be shaped as resonant optical antennas, radiating light from subwavelength volumes. However, tailoring electronic interface properties of laterally arranged electrodes with nanoscale gaps - to optimize charge-carrier injection - is rather challenging, yet crucial for further development of highly efficient nanolight sources.

View Article and Find Full Text PDF

Electroluminescence from single molecules adsorbed on a conducting surface imposes conflicting demands for the molecule-electrode coupling. To conduct electrons, the molecular orbitals need to be hybridized with the electrodes. To emit light, they need to be decoupled from the electrodes to prevent fluorescence quenching.

View Article and Find Full Text PDF

Controlling charge transport through molecules is challenging because it requires engineering of the energy of molecular orbitals involved in the transport process. While side groups are central to maintaining solubility in many molecular materials, their role in modulating charge transport through single-molecule junctions has received less attention. Here, using two break-junction techniques and computational modeling, we investigate systematically the effect of electron-donating and -withdrawing side groups on the charge transport through single molecules.

View Article and Find Full Text PDF

Invited for the cover of this issue is the group of Marcel Mayor at the University of Basel with co-workers Olaf Fuhr and Dieter Fenske from Karlsruhe Institute of Technology. The image depicts the studied all-carbon polygon shaped macrocycles along with their intense circular dichroism spectra in the background. The bright light within the macrocycles displays its efficient conjugation.

View Article and Find Full Text PDF

Intra- and intermolecular interactions are dominating chemical processes, and their concerted interplay enables complex nonequilibrium states like life. While the responsible basic forces are typically investigated spectroscopically, a conductance measurement to probe and control these interactions in a single molecule far out of equilibrium is reported here. Specifically, by separating macroscopic metal electrodes, two π-conjugated, bridge-connected porphyrin decks are peeled off on one side, but compressed on the other side due to the covalent mechanical fixation.

View Article and Find Full Text PDF