Mol Cell Endocrinol
December 2023
Chloroquine diphosphate (CQ), a weak base used to inhibit autophagic flux and treat malaria and rheumatoid diseases, has been shown, through unknown mechanisms, to improve glucose and lipid homeostasis in patients and rodents. We investigate herein the molecular mechanisms underlying these CQ beneficial metabolic actions in diet-induced obese mice. For this, C57BL6/J mice fed with either a chow or a high-fat diet (HFD) and uncoupling protein 1 (UCP-1) KO and adipocyte Atg7-deficient mice fed with a HFD were treated or not with CQ (60 mg/kg of body weight/day) during 8 weeks and evaluated for body weight, adiposity, glucose homeostasis and brown and white adipose tissues (BAT and WAT) UCP-1 content.
View Article and Find Full Text PDFInflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of , a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia.
View Article and Find Full Text PDFDeletion of mechanistic target of rapamycin complex 2 (mTORC2) essential component rapamycin insensitive companion of mTOR (Rictor) by a Cre recombinase under control of the broad, nonadipocyte-specific aP2/FABP4 promoter impairs thermoregulation and brown adipose tissue (BAT) glucose uptake on acute cold exposure. We investigated herein whether adipocyte-specific mTORC2 deficiency affects BAT and inguinal white adipose tissue (iWAT) signaling, metabolism, and thermogenesis in cold-acclimated mice. For this, 8-wk-old male mice bearing Rictor deletion and therefore mTORC2 deficiency in adipocytes (adiponectin-Cre) and littermates controls were either kept at thermoneutrality (30 ± 1°C) or cold-acclimated (10 ± 1°C) for 14 days and evaluated for BAT and iWAT signaling, metabolism, and thermogenesis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
August 2021
The nutrient sensors peroxisome proliferator-activated receptor γ (PPARγ) and mechanistic target of rapamycin complex 1 (mTORC1) closely interact in the regulation of adipocyte lipid storage. The precise mechanisms underlying this interaction and whether this extends to other metabolic processes and the endocrine function of adipocytes are still unknown. We investigated herein the involvement of mTORC1 as a mediator of the actions of the PPARγ ligand rosiglitazone in subcutaneous inguinal white adipose tissue (iWAT) mass, endocrine function, lipidome, transcriptome and branched-chain amino acid (BCAA) metabolism.
View Article and Find Full Text PDFScope: The mechanisms and involvement of uncoupling protein 1 (UCP1) in the protection from obesity and insulin resistance induced by intake of a high-fat diet rich in omega-3 (n-3) fatty acids are investigated.
Methods And Results: C57BL/6J mice are fed either a low-fat (control group) or one of two isocaloric high-fat diets containing either lard (HFD) or fish oil (HFN3) as fat source and evaluated for body weight, adiposity, energy expenditure, glucose homeostasis, and inguinal white and interscapular brown adipose tissue (iWAT and iBAT, respectively) gene expression, lipidome, and mitochondrial bioenergetics. HFN3 intake protected from obesity, glucose and insulin intolerances, and hyperinsulinemia.
Objective: We investigated whether PPARγ modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPARγ activation.
Methods: Mice with adipocyte deletion of one or two PPARγ copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15 mg/kg/day, 14 days) were evaluated for glucose and BCAA homeostasis.
Results: Adipocyte deletion of one PPARγ copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain α-ketoacid dehydrogenase (BCKDH) complex subunits.
Scope: To test whether myeloid cells Tsc1 deletion and therefore constitutive activation of the nutrient sensor mTORC1 protects from high-fat diet (HFD)-induced obesity, glucose intolerance, and adipose tissue inflammation.
Methods And Results: Mice with Tsc1 deletion in myeloid cells (MTsc1KO) and littermate controls (MTsc1WT) were fed with HFD for 8 weeks and evaluated for body weight, glucose homeostasis, and adipose tissue inflammation. MTsc1KO mice were protected from HFD-induced obesity and glucose intolerance.
Mechanistic target of rapamycin complex (mTORC)1 activity is increased in adipose tissue of obese insulin-resistant mice, but its role in the regulation of tissue inflammation is unknown. Herein, we investigated the effects of adipocyte mTORC1 deficiency on adipose tissue inflammation and glucose homeostasis. For this, mice with adipocyte raptor deletion and controls fed a chow or a high-fat diet were evaluated for body mass, adiposity, glucose homeostasis, and adipose tissue inflammation.
View Article and Find Full Text PDFGenetic- and diet-induced obesity and insulin resistance are associated with an increase in mechanistic target of rapamycin complex (mTORC) 1 activity in adipose tissue. We investigated herein the effects of pharmacological mTORC1 inhibition in the development of adipose tissue inflammation induced by high-fat diet (HFD) feeding, as well as in the polarization, metabolism and function of bone marrow-derived macrophages (BMDM). For this, C57BL/6J mice fed with a standard chow diet or a HFD (60% of calories from fat) and treated with either vehicle (0.
View Article and Find Full Text PDFMechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents.
View Article and Find Full Text PDF