Background: Pulmonary tuberculosis (PTB) is a prevalent chronic disease associated with a significant economic burden on patients. Using machine learning to predict hospitalization costs can allocate medical resources effectively and optimize the cost structure rationally, so as to control the hospitalization costs of patients better.
Methods: This research analyzed data (2020-2022) from a Kashgar pulmonary hospital's information system, involving 9570 eligible PTB patients.
Hepatic cystic echinococcosis (HCE) is a widely seen parasitic infection. Biological activity is crucial for treatment planning. This work aims to explore the potential applications of a deep learning radiomics (DLR) model, based on CT images, in predicting the biological activity grading of hepatic cystic echinococcosis.
View Article and Find Full Text PDFBackground: Tuberculosis spondylitis (TS), commonly known as Pott's disease, is a severe type of skeletal tuberculosis that typically requires surgical treatment. However, this treatment option has led to an increase in healthcare costs due to prolonged hospital stays (PLOS). Therefore, identifying risk factors associated with extended PLOS is necessary.
View Article and Find Full Text PDFRationale And Objectives: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set.
View Article and Find Full Text PDFBackground: Cerebral alveolar echinococcosis (CAE) and brain metastases (BM) share similar in locations and imaging appearance. However, they require distinct treatment approaches, with CAE typically treated with chemotherapy and surgery, while BM is managed with radiotherapy and targeted therapy for the primary malignancy. Accurate diagnosis is crucial due to the divergent treatment strategies.
View Article and Find Full Text PDFThree deep learning (DL)-based prediction models (PMs) using longitudinal CT images were developed to predict tuberculosis (TB) treatment outcomes. The internal dataset consists of 493 bacteriologically confirmed TB patients who completed the anti-tuberculosis treatment with three-time CT scans, including a pretreatment CT scan and two follow-up CT scans. PM1 was trained using only pretreatment CT scans, and PM2 and PM3 were developed by adding follow-up scans.
View Article and Find Full Text PDFBackground: To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission.
Methods: An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.
Active pulmonary tuberculosis (ATB), which is more infectious and has a higher mortality rate compared with non-active pulmonary tuberculosis (non-ATB), needs to be diagnosed accurately and timely to prevent the tuberculosis from spreading and causing deaths. However, traditional differential diagnosis methods of active pulmonary tuberculosis involve bacteriological testing, sputum culturing and radiological images reading, which is time consuming and labour intensive. Therefore, an artificial intelligence model for ATB differential diagnosis would offer great assistance in clinical practice.
View Article and Find Full Text PDFAccurate localization and classification of intracerebral hemorrhage (ICH) lesions are of great significance for the treatment and prognosis of patients with ICH. The purpose of this study is to develop a symmetric prior knowledge based deep learning model to segment ICH lesions in computed tomography (CT). A novel symmetric Transformer network (Sym-TransNet) is designed to segment ICH lesions in CT images.
View Article and Find Full Text PDFBackground: This study aimed to develop a radiogenomic prognostic prediction model for colorectal cancer (CRC) by investigating the biological and clinical relevance of intratumoural heterogeneity.
Methods: This retrospective multi-cohort study was conducted in three steps. First, we identified genomic subclones using unsupervised deconvolution analysis.
Since segmentation labeling is usually time-consuming and annotating medical images requires professional expertise, it is laborious to obtain a large-scale, high-quality annotated segmentation dataset. We propose a novel weakly- and semi-supervised framework named SOUSA (Segmentation Only Uses Sparse Annotations), aiming at learning from a small set of sparse annotated data and a large amount of unlabeled data. The proposed framework contains a teacher model and a student model.
View Article and Find Full Text PDFObjective: Preoperative identification of lymphovascular invasion (LVI) in patients with invasive breast cancer is challenging due to absence of reliable biomarkers or tools in clinical settings. We aimed to establish and validate multiparametric magnetic resonance imaging (MRI)-based radiomic models to predict the risk of lymphovascular invasion (LVI) in patients with invasive breast cancer.
Methods: This retrospective study included a total of 175 patients with confirmed invasive breast cancer who had known LVI status and preoperative MRI from two tertiary centers.
Acute liver failure (ALF) is a rapidly progressive disease with high morbidity and mortality rates. Liver transplantation and artificial liver (AL) support systems, such as ALs and bioartificial livers (BALs), are the two major therapies for ALF. Compared to ALs, BALs are composed of functional hepatocytes that provide essential liver functions, including detoxification, metabolite synthesis, and biotransformation.
View Article and Find Full Text PDFAs a major infectious disease, (TB) still poses a threat to people's health in China. As a triage test for TB, reading chest radiography with traditional approach ends up with high inter-radiologist and intra-radiologist variability, moderate specificity and a waste of time and medical resources. Thus, this study established a deep convolutional neural network (DCNN) based artificial intelligence (AI) algorithm, aiming at diagnosing TB on posteroanterior chest X-ray photographs in an effective and accurate way.
View Article and Find Full Text PDFBackground: Preoperative evaluation of aggressiveness, including tumor histological subtype, grade of differentiation, Federation International of Gynecology and Obstetrics (FIGO) stage, and depth of myometrial invasion, is significant for treatment planning and prognosis in endometrial carcinoma (EC). The purpose of this study was to evaluate whether three-dimensional (3D) magnetic resonance elastography (MRE) can help predict the aggressiveness of EC.
Methods: From August 2015 to January 2019, 82 consecutive patients with suspected uterine tumors underwent pelvic MRI and MRE scans, and 15 patients with confirmed EC after surgical resection were enrolled.
Tuberculosis (TB) is a major health issue with high mortality rates worldwide. Recently, tremendous researches of artificial intelligence (AI) have been conducted targeting at TB to reduce the diagnostic burden. However, most researches are conducted in the developed urban areas.
View Article and Find Full Text PDFObjectives: To assess the methodological quality of radiomic studies based on positron emission tomography/computed tomography (PET/CT) images predicting epidermal growth factor receptor (EGFR) mutation status in patients with non-small cell lung cancer (NSCLC).
Methods: We systematically searched for eligible studies in the PubMed and Web of Science datasets using the terms "radiomics", "PET/CT", "NSCLC", and "EGFR". The included studies were screened by two reviewers independently.
Objectives: To develop and validate a radiomic model to predict the rapid progression (defined as volume growth of pneumonia lesions > 50% within seven days) in patients with coronavirus disease 2019 (COVID-19).
Methods: Patients with laboratory-confirmed COVID-19 who underwent longitudinal chest CT between January 01 and February 18, 2020 were included. A total of 1316 radiomic features were extracted from the lung parenchyma window for each CT.
Background: Lymphovascular invasion (LVI) is a vital risk factor for prognosis across cancers. We aimed to develop a scoring system for stratifying LVI risk in patients with breast cancer.
Methods: A total of 301 consecutive patients (mean age, 49.