Publications by authors named "Mayhew T"

Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient.

View Article and Find Full Text PDF

The terms morphome and morphomics are not new but, recently, a group of morphologists and cell biologists has given them clear definitions and emphasised their integral importance in systems biology. By analogy to other '-omes', the morphome refers to the distribution of matter within 3-dimensional (3D) space. It equates to the totality of morphological features within a biological system (virus, single cell, multicellular organism or populations thereof) and morphomics is the systematic study of those structures.

View Article and Find Full Text PDF

Introduction: The placenta is a transient organ the functioning of which has health consequences far beyond the embryo/fetus. Understanding the biology of any system (organ, organism, single cell, etc) requires a comprehensive and inclusive approach which embraces all the biomedical disciplines and 'omic' technologies and then integrates information obtained from all of them. Among the latest 'omics' is morphomics.

View Article and Find Full Text PDF

Systems-based understanding of living organisms depends on acquiring huge datasets from arrays of genes, transcripts, proteins, and lipids. These data, referred to as 'omes', are assembled using 'omics' methodologies. Currently a comprehensive, quantitative view of cellular and organellar systems in 3D space at nanoscale/molecular resolution is missing.

View Article and Find Full Text PDF

Biological systems span multiple levels of structural organisation from the macroscopic, via the microscopic, to the nanoscale. Therefore, comprehensive investigation of systems biology requires application of imaging modalities that reveal structure at multiple resolution scales. Nanomorphomics is the part of morphomics devoted to the systematic study of functional morphology at the nanoscale and an important element of its achievement is the combination of immunolabelling and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

How the turnover of villous trophoblast is regulated is important for understanding normal and complicated pregnancies. There is considerable accord that syncytiotrophoblast (STB) grows and is refreshed by recruiting post-mitotic cells from the deeper cytotrophoblast (CTB). Nuclei in STB exhibit a spectrum of morphologies and packing densities and, until recently, there seemed to be a consensus that this variation reflected a transition from an early undifferentiated CTB-like phenotype to a long pre-apoptotic and brief apoptotic phase.

View Article and Find Full Text PDF

Body mass (BM) of terrestrial mammalian species ranges from a few grams in the case of the Etruscan shrew to a few tonnes for an elephant. The mass-specific metabolic rate, as well as heart rate, decrease with increasing BM, whereas heart mass is proportional to BM. In the present study, we investigated the scaling behaviour of several compartments of the left ventricular myocardium, notably its innervation, capillaries and cardiomyocytes.

View Article and Find Full Text PDF

For many organisms, respiratory gas exchange is a vital activity and different types of gas-exchange apparatus have evolved to meet individual needs. They include not only skin, gills, tracheal systems and lungs but also transient structures such as the chorioallantois of avian eggs and the placenta of eutherian mammals. The ability of these structures to allow passage of oxygen by passive diffusion can be expressed as a diffusive conductance (units: cm(3) O2 min(-1) kPa(-1)).

View Article and Find Full Text PDF

Previous studies have shown that particulate matter (PM) compromise birth weight and placental morphology. We hypothesized that exposing mice to ambient PM would affect umbilical cord (UC) morphology. To test this, mice were kept in paired open-top exposure chambers at the same location and ambient conditions but, in one chamber, the air was filtered (F) and, in the other, it was not (NF).

View Article and Find Full Text PDF

This study examines both hands of right-handed (dextral) subjects 5-65 years old in order to define the separate growth trajectories of digit lengths (2D-5D) and hand widths; to assess how 2D : 4D and other digit ratios also vary with age; and to test whether lengths are influenced by gender dimorphism and lateral (right/left) asymmetry. Calliper measurements were made from hand photocopies. Growth patterns were analysed by linear regression and correlation, main and interaction effects of age and gender were resolved by analysis of variance, and lateral asymmetries were identified by paired tests.

View Article and Find Full Text PDF

An important tool in cell biology is the combination of immunogold labelling and transmission electron microscopy (TEM) by which target molecules (e.g. antigens) are bound specifically to affinity markers (primary antibodies) and then detected and localised with visualisation probes (e.

View Article and Find Full Text PDF

The syncytiotrophoblast (STB) epithelial covering of the human placenta is a unique terminally differentiated, multi-nucleated syncytium. No mitotic bodies are observed in the STB, which is sustained by continuous fusion of underlying cytotrophoblast cells (CTB). As a result, STB nuclei are of different ages.

View Article and Find Full Text PDF

Altered endothelial function may underlie human cardiovascular diseases, including hypertension, diabetes and pre-eclampsia. While much is known about endothelial function in small arteries, very little is known about endothelial responses in small veins isolated from humans. Therefore, we assessed endothelium-dependent responses in omental arteries and veins isolated from healthy pregnant women, focussing on endothelium-dependent hyperpolarising (EDH) mechanisms.

View Article and Find Full Text PDF

A review is presented of recently developed methods for quantifying electron microscopical thin sections on which colloidal gold-labelled markers are used to identify and localize interesting molecules. These efficient methods rely on sound principles of random sampling, event counting, and statistical evaluation. Distributions of immunogold particles across cellular compartments can be compared within and between experimental groups.

View Article and Find Full Text PDF

Recently, superior cervical ganglionectomy has been performed to investigate a variety of scientific topics from regulation of intraocular pressure to suppression of lingual tumour growth. Despite these recent advances in our understanding of the functional mechanisms underlying superior cervical ganglion (SCG) growth and development after surgical ablation, there still exists a need for information concerning the quantitative nature of the relationships between the removed SCG and its remaining contralateral ganglion and between the remaining SCG and its modified innervation territory. To this end, using design-based stereological methods, we have investigated the structural changes induced by unilateral ganglionectomy in sheep at three distinct timepoints (2, 7 and 12 weeks) after surgery.

View Article and Find Full Text PDF

Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances.

View Article and Find Full Text PDF

During placentation, the concentration of fibrinous deposits on the surfaces of maternal vasculature plays a role in villous development and has been strongly implicated in the pathophysiology of human fetal growth restriction (FGR). Fibrinous deposits are conspicuous sites of platelet aggregation where there is local activation of the hemostatic cascade. During activation of the hemostatic cascade, a number of pro- and antiangiogenic agents may be generated at the cell surface, and an imbalance in these factors may contribute to the placental pathology characteristic of FGR.

View Article and Find Full Text PDF

The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number.

View Article and Find Full Text PDF

Rationale: We previously reported outcome-associated decreases in muscle energetic status and mitochondrial dysfunction in septic patients with multiorgan failure. We postulate that survivors have a greater ability to maintain or recover normal mitochondrial functionality.

Objectives: To determine whether mitochondrial biogenesis, the process promoting mitochondrial capacity, is affected in critically ill patients.

View Article and Find Full Text PDF

The intrauterine environment has an important influence on placental development. In pre-eclampsia (PE) and intrauterine growth restriction (IUGR), early remodelling of spiral arteries has repercussions for uteroplacental blood flow. The IUGR placenta exhibits compromised growth of villous trees, a smaller intervillous space and a lower diffusive conductance.

View Article and Find Full Text PDF

We test the experimental hypothesis that early changes in the ultrasound appearance of the placenta reflect poor or reduced placental function. The sonographic (Grannum) grade of placental maturity was compared to placental function as expressed by the morphometric oxygen diffusive conductance of the villous membrane. Ultrasonography was used to assess the Grannum grade of 32 placentas at 31-34 weeks of gestation.

View Article and Find Full Text PDF

In recent years, there have been important advances in the quantification of high-resolution (electron microscopical) images of tissue sections on which colloidal gold-labelled probes serve to identify and localize interesting target antigens. With these new methods, the distributions of gold particle counts across volume-occupying and/or surface-occupying compartments can be compared within or between experimental groups of cells, tissues or organs. Method I (for within-group comparisons) tests whether or not there is preferential labelling of compartments by comparing observed and expected gold labelling distributions using Chi-squared (chi2) analyses.

View Article and Find Full Text PDF