Publications by authors named "Mayden J"

Synthetic peptides based on functionally equivalent (as defined by similar patterns of chemically equivalent amino acids) serine protease inhibitor (serpin) C-terminal sequences inhibit both classical and alternative pathways of complement activation. Inhibition was also found with hybrid peptides consisting of the cleavage site of one serpin (antithrombin III, alpha-1-antitrypsin, or antichymotrypsin) attached to the short and long functionally equivalent protease binding cores of the other two serpins. A hybrid peptide composed of the sequence at the site of cleavage of C4 by C1s attached to the long binding core of antithrombin III was selective in inhibiting the classical pathway with no effect on the alternative pathway at a concn of 10 microM.

View Article and Find Full Text PDF

Synthetic peptides based on the amino acid sequence at the site of cleavage of C3 by classical and alternative pathway convertases were found to be poor inhibitors of hemolysis except at concns of 1 mM and higher. Synthetic peptides of a second type, based on the C-terminal sequence of antithrombin III, were more effective; the best among them caused significant inhibition of hemolysis at a concn of 5 microM. A hybrid peptide composed of the sequence at the site of cleavage of C4 by C1s attached to an antithrombin III sequence was selective, inhibiting the classical pathway with no effect on the alternative pathway at a concentration of 25 microM.

View Article and Find Full Text PDF

The inhibition of immune precipitation is mediated by the classical complement pathway. We report here that the rate of precipitate formation depends on the genetic form of human C4 present during immune precipitation. C4A3 is more effective than C4B1 in its capacity to inhibit the rate of immune precipitate formation in serum and in serum-free reaction mixtures containing C1 and C4.

View Article and Find Full Text PDF

Epidemiological data show that O18:K1 Escherichia coli is a common cause of neonatal bacteremia and meningitis. These bacteria were capable of multiplying in the bloodstream of newborn rats and were resistant to the bactericidal effects of complement in the absence of specific antibodies. The roles played by the O antigen and the K antigen in complement resistance were analyzed by comparing the bactericidal effects of normal sera and of sera deficient in various complement components or in immunoglobulins.

View Article and Find Full Text PDF

We have shown that the traT gene product was responsible for the complement resistance of the R100 plasmid. We compared this resistance with that specified by the iss gene of the ColV,I-K94 plasmid. The levels of resistance specified by the two genes were similar, and there was no additive effect on resistance when both genes were present together.

View Article and Find Full Text PDF