Publications by authors named "Mayara C Uvida"

Reinforcement steel extensively applied in civil construction is susceptible to corrosion due to the carbonation process in reinforced concrete and chloride ions diffusion. Epoxy-silica-based coatings are a promising option to guarantee the long-term stability of reinforced concrete structures. In this study, the influence of the proportion between the poly (bisphenol-A-co-epichlorhydrin) resin (DGEBA) and the curing agent diethylenetriamine (DETA) on the structural, morphological, and barrier properties of epoxy-silica nanocomposites were evaluated.

View Article and Find Full Text PDF

Ti6Al4V is the mostly applied metallic alloy for orthopedic and dental implants, however, its lack of osseointegration and poor long-term corrosion resistance often leads to a secondary surgical intervention, recovery delay and toxicity to the surrounding tissue. As a potential solution of these issues poly(methyl methacrylate)-silicon dioxide (PMMA-silica) coatings have been applied on a Ti6Al4V alloy to act simultaneously as an anticorrosive barrier and bioactive film. The nanocomposite, composed of PMMA covalently bonded to the silica phase through 3-(trimethoxysilyl)propyl methacrylate (MPTS), has been synthesized combining the sol-gel process with radical polymerization of methyl methacrylate.

View Article and Find Full Text PDF

In this work, structural and active corrosion inhibition effects induced by lithium ion addition in organic-inorganic coatings based on poly(methyl methacrylate) (PMMA)-silica sol-gel coatings have been investigated. The addition of increasing amounts of lithium carbonate (0, 500, 1000, and 2000 ppm), yielded homogeneous hybrid coatings with increased connectivity of nanometric silica cross-link nodes, covalently linked to the PMMA matrix, and improved adhesion to the aluminum substrate (AA7075). Electrochemical impedance spectroscopy (EIS), performed in 3.

View Article and Find Full Text PDF

Hypothesis: The fraction of the silica/siloxane phase is a crucial parameter, which determines the structure and thus the properties of epoxy-siloxane-silica hybrid coatings. A careful adjustment of the colloidal precursor formulation allows tuning the nanostructure towards a highly condensed and cross-linked hybrid nanocomposite, suitable as an efficient anticorrosive coating.

Experiments: Novel epoxy-siloxane-silica hybrids have been prepared through the curing reaction of poly(bisphenol A-co-epichlorohydrin) (DGEBA) with diethyltriamine (DETA) and (3-glycidoxypropyl)methyltriethoxysilane (GPTMS), followed by hydrolytic condensation of tetraethoxysilane (TEOS) and GPTMS.

View Article and Find Full Text PDF