Publications by authors named "Mayakannan Manikandan"

Mechanosensitive hair cells in the cochlea are responsible for hearing but are vulnerable to damage by genetic mutations and environmental insults. The paucity of human cochlear tissues makes it difficult to study cochlear hair cells. Organoids offer a compelling platform to study scarce tissues in vitro; however, derivation of cochlear cell types has proven non-trivial.

View Article and Find Full Text PDF

Mitochondrial Ca regulates a wide range of cell processes, including morphogenesis, metabolism, excitotoxicity, and survival. In cochlear hair cells, the activation of mechano-electrical transduction and voltage-gated Ca channels result in a large influx of Ca. The intracellular rise in Ca is partly balanced by the mitochondria which rapidly uptakes Ca via a highly selective channel comprised of the main pore-forming subunit, the mitochondrial Ca uniporter (MCU), and associated regulatory proteins.

View Article and Find Full Text PDF

More people globally depend on the water buffalo than any other domesticated species, and as the most closely related domesticated species to cattle they can provide important insights into the shared evolutionary basis of domestication. Here, we sequence the genomes of 79 water buffalo across seven breeds and compare patterns of between breed selective sweeps with those seen for 294 cattle genomes representing 13 global breeds. The genomic regions under selection between cattle breeds significantly overlap regions linked to stature in human genetic studies, with a disproportionate number of these loci also shown to be under selection between water buffalo breeds.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are reported to function as a major component in the cellular signaling circuit, which regulates epithelial-mesenchymal transition (EMT). Dysregulation of the microRNA-200 (miR-200) family and EMT-associated genes enables tumor metastasis and resistance to therapy. The present study profiled miR-200 family members miR-200a, miR-200b, miR-200c, miR-141 and miR-429, and also several EMT-regulatory genes including zinc finger E-box-binding homeobox (ZEB)1, ZEB2, epithelial cadherin and vimentin in 40 oral primary tumors in order to understand their role(s) in oral squamous cell carcinoma (OSCC).

View Article and Find Full Text PDF

Oral squamous cell carcinoma is the most aggressive cancer that is associated with high recurrence, metastasis, and poor treatment outcome. Dysregulation of long non-coding RNAs has been shown to promote tumor growth and metastasis in several cancers. In this study, we investigated the expression of 11 selected long non-coding RNAs that are associated with cell proliferation, metastasis, and tumor suppression in oral squamous cell carcinomas and normal tissues by quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Breast cancer and cervical cancer are the leading causes of death in women worldwide as well as in India, whilst oral cancer is the top most common cancer among Asian especially in Indian men in terms of both incidence and mortality rate. Genetic factors determining the predisposition to cancer are being explored to identify the signature genetic variations associated with these cancers. Recently, a germline deletion polymorphism in APOBEC3 gene cluster which completely deletes APOBEC3B coding region has been studied for its association with cancer risk.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights the potential of microRNAs (miRNAs) as diagnostic and prognostic markers in oral squamous cell carcinoma (OSCC), aiming to link their expression to tumor characteristics and signaling pathways.
  • Using specialized miRNA arrays and TaqMan assays, the study evaluated miRNA expression in tissue samples from two cohorts, discovering 46 differentially expressed miRNAs in OSCC.
  • Validation of 10 key miRNAs revealed their complex relationships with tumor suppressor and oncogenes, alongside associations with tumor stage and lymph node invasion, suggesting these miRNAs may influence cancer progression through specific signaling pathways.
View Article and Find Full Text PDF

Squamous cell carcinoma (SCC) of the uterine cervix and oral cavity are most common cancers in India. Telomerase reverse transcriptase (TERT) overexpression is one of the hallmarks for cancer, and activation through promoter mutation C228T and C250T has been reported in variety of tumors and often shown to be associated with aggressive tumors. In the present study, we analyzed these two hot spot mutations in 181 primary tumors of the uterine cervix and oral cavity by direct DNA sequencing and correlated with patient's clinicopathological characteristics.

View Article and Find Full Text PDF

Background: Aberrant microRNA expression has been associated with the pathogenesis of a variety of human malignancies including oral squamous cell carcinoma (SCC). In this study, we examined primary oral SCCs for the expression of 6 candidate miRNAs, of which five (miR-34a, miR-143, miR-373, miR-380-5p, and miR- 504) regulate the tumor suppressor TP53 and one (miR-99a) is involved in AKT/mTOR signaling.

Materials And Methods: Tumor tissues (punch biopsies) were collected from 52 oral cancer patients and as a control, 8 independent adjacent normal tissue samples were also obtained.

View Article and Find Full Text PDF

Background: Previous studies have described the aberrantly expressed microRNAs (miRNAs) in oral squamous cell carcinoma (OSCC), and we reasoned that studying frequently deregulated candidate miRNAs in OSCC of Indian ethnicity could aid in better understanding of the genetic/environmental impact on the expression statuses of these miRNAs. Therefore, we evaluated the differential expression of six selected miRNAs namely hsa-miR-21, hsa-miR-125b2*, hsa-miR-138, hsa-miR-155, hsa-miR-184, and hsa-miR-205 in OSCC specimens of Indian ethnicity.

Methods: Two-step Reverse transcriptase quantitative PCR using inventoried TaqMan single miRNA assays was employed to study the expression of the selected miRNAs in 42 OSCC tumors and eight adjacent normal specimens.

View Article and Find Full Text PDF

Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) refers to a group of childhood neurodevelopmental disorders with polygenic etiology. The expression of many genes implicated in ASD is tightly regulated by various factors including microRNAs (miRNAs), a class of noncoding RNAs ~22 nucleotides in length that function to suppress translation by pairing with 'miRNA recognition elements' (MREs) present in the 3'untranslated region (3'UTR) of target mRNAs. This emphasizes the role played by miRNAs in regulating neurogenesis, brain development and differentiation and hence any perturbations in this regulatory mechanism might affect these processes as well.

View Article and Find Full Text PDF

Hearing loss is the most common sensory disorder and is genetically heterogeneous. Apart from nuclear gene mutations, a number of inherited mitochondrial mutations have also been implicated. The m.

View Article and Find Full Text PDF

Cancer, a complex genetic disease involving uncontrolled cell proliferation, is caused by inactivation of tumor suppressor genes and activation of oncogenes. A vast majority of these cancer causing genes are known targets of microRNAs (miRNAs) that bind to complementary sequences in 3' untranslated regions (UTR) of messenger RNAs and repress them from translation. Single Nucleotide Polymorphisms (SNPs) occurring naturally in such miRNA binding regions can alter the miRNA:mRNA interaction and can significantly affect gene expression.

View Article and Find Full Text PDF

Autism spectrum disorder is a complex neurodevelopmental disorder that appears during the first three years of infancy and lasts throughout a person's life. Recently a large category of genomic structural variants, denoted as copy number variants (CNVs), were established to be a major contributor of the pathophysiology of autism. To date almost all studies have focussed only on the genes present in the CNV loci, but the impact of non-coding regulatory microRNAs (miRNAs) present in these regions remain largely unexplored.

View Article and Find Full Text PDF

Haploinsufficiency of tumor suppressor genes, wherein the reduced production and activity of proteins results in the inability of the cell to maintain normal cellular function, is one among the various causes of cancer. However the precise molecular mechanisms underlying this condition remain unclear. Here we hypothesize that single nucleotide polymorphisms (SNPs) in the 3'untranslated region (UTR) of mRNAs and microRNA seed sequence (miR-SNPs) may cause haploinsufficiency at the level of proteins through altered binding specificity of microRNAs (miRNAs).

View Article and Find Full Text PDF