Animal affective computing is an emerging new field, which has so far mainly focused on pain, while other emotional states remain uncharted territories, especially in horses. This study is the first to develop AI models to automatically recognize horse emotional states from facial expressions using data collected in a controlled experiment. We explore two types of pipelines: a deep learning one which takes as input video footage, and a machine learning one which takes as input EquiFACS annotations.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
March 2022
Photon-HDF5 is an open-source and open file format for storing photon-counting data from single molecule microscopy experiments, introduced to simplify data exchange and increase the reproducibility of data analysis. Part of the Photon-HDF5 ecosystem, is phconvert, an extensible python library that allows converting proprietary formats into Photon-HDF5 files. However, its use requires some proficiency with command line instructions, the python programming language, and the YAML markup format.
View Article and Find Full Text PDFSingle-molecule Förster resonance energy transfer (smFRET) is a powerful technique for nanometer-scale studies of single molecules. Solution-based smFRET, in particular, can be used to study equilibrium intra- and intermolecular conformations, binding/unbinding events and conformational changes under biologically relevant conditions without ensemble averaging. However, single-spot smFRET measurements in solution are slow.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
December 2018
Single-molecule fluorescence spectroscopy (SMFS), based on the detection of individual molecules freely diffusing through the excitation spot of a confocal microscope, has allowed unprecedented insights into biological processes at the molecular level, but suffers from limited throughput. We have recently introduced a multispot version of SMFS, which allows achieving high-throughput SMFS by virtue of parallelization, and relies on custom silicon single-photon avalanche diode (SPAD) detector arrays. Here, we examine the premise of this parallelization approach, which is that data acquired from different spots is uncorrelated.
View Article and Find Full Text PDFSingle-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples.
View Article and Find Full Text PDFSemiconductor quantum dots (QDs) have proven to be superior probes for single-molecule imaging compared to organic or genetically encoded fluorophores, but they are limited by difficulties in protein targeting, their larger size, and on-off blinking. Here, we report compact aqueous CdSe/CdS QDs with significantly improved bioconjugation efficiency and superior single-molecule optical properties. We have synthesized covalent protein labeling ligands (i.
View Article and Find Full Text PDF