A central question in ecology is to what extent do trophic interactions govern the structure and function of communities? This question is becoming more pressing as trophic interactions shift with rapid climate change. Sea urchins and abalone are key invertebrates in the habitats where they reside. Sea urchins are critical members of exemplar trophic cascades in kelp forests due to their impact on kelp establishment and maintenance; yet their populations are controlled by predators, such as sea otters and sunflower sea stars.
View Article and Find Full Text PDFIn the spirit of this symposium on the physical mechanisms of behavior, we review mantis shrimp ritualized fighting, from the telson to the attack, as an inspiring example of how the integration of biomechanics and behavioral research can yield a penetrating narrative for how animals accomplish important activities, including agonistic actions. Resolving conflicts with conspecifics over valuable resources is an essential task for animals, and this takes an unusual form in mantis shrimp due to their powerful raptorial appendages. Decades of field and laboratory research have provided key insights into the natural agonistic interactions of diverse mantis shrimp species, including how they use their raptorial weapons against one another in telson sparring matches over cavities.
View Article and Find Full Text PDFAnimal acoustic communication systems can be built upon co-opted structures that become specialized for sound production or morphological novelties. The ghost crab, , evolved a novel stridulation apparatus on the claws that is used during agonistic interactions, but they also produce a rasping sound without their claw apparatus. We investigated the nature of these sounds and show that adopted a unique and redundant mode of sound production by co-opting the gastric mill (grinding teeth of the foregut).
View Article and Find Full Text PDFChytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which has led to devastating declines in amphibian populations worldwide. Current theory predicts that Bd infections are maintained through both reproduction on the host's skin and reinfection from sources outside of the host. To investigate the importance of external reinfection on pathogen burden, we infected captive-bred individuals of the highly susceptible Panamanian Golden Frog, Atelopus glyphus, and wild-caught glass frogs, Espadarana prosoblepon, with Bd.
View Article and Find Full Text PDFCompetition for food drives divergence and specialization in feeding morphology. Stomatopod crustaceans have two kinds of highly specialized feeding appendages: either elongate spear-like appendages () used to ambush soft-bodied evasive prey or hammer-like appendages () that produce extremely high forces used both to break hard-shelled prey and to capture evasive prey. To evaluate associations between appendage type and feeding ecology, the diet of two small smasher and spearer species (size range: 21-27 mm) that co-occur were compared.
View Article and Find Full Text PDFCalcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp's raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors.
View Article and Find Full Text PDFMany animals are considered to be specialists because they have feeding structures that are fine-tuned for consuming specific prey. For example, "smasher" mantis shrimp have highly specialized predatory appendages that generate forceful strikes to break apart hard-shelled prey. Anecdotal observations suggest, however, that the diet of smashers may include soft-bodied prey as well.
View Article and Find Full Text PDFStable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues.
View Article and Find Full Text PDF