Mouse models of alcohol use disorder (AUD) revealed purinergic P2X4 receptors (P2X4Rs) as a promising target for AUD drug development. We have previously demonstrated that residues at the transmembrane (TM)-ectodomain interface and within the TM1 segment contribute to the formation of an ethanol action pocket in P2X4Rs. In the present study, we tested the hypothesis that there are more residues in TM1 and TM2 segments that are important for the ethanol sensitivity of P2X4Rs.
View Article and Find Full Text PDFPurinergic Signal
December 2013
ATP-gated purinergic P2X4 receptors (P2X4Rs) are the most alcohol-sensitive P2XR subtype. We recently reported that ivermectin (IVM), an antiparasitic used in animals and humans, antagonized ethanol inhibition of P2X4Rs. Furthermore, IVM reduced ethanol intake in mice.
View Article and Find Full Text PDFP2X receptors (P2XRs) are ion channels gated by synaptically released ATP. The P2X4 is the most abundant P2XR subtype expressed in the central nervous system and to date is the most ethanol-sensitive. In addition, genomic findings suggest that P2X4Rs may play a role in alcohol intake/preference.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
September 2010
ATP-gated purinergic P2X4 receptors (P2X4Rs) are expressed in the central nervous system and are sensitive to ethanol at intoxicating concentrations. P2XRs are trimeric; each subunit consists of two transmembrane (TM) alpha-helical segments, a large extracellular domain, and intracellular amino and carboxyl terminals. Recent work indicates that position 336 (Met336) in the TM2 segment is critical for ethanol modulation of P2X4Rs.
View Article and Find Full Text PDFATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs.
View Article and Find Full Text PDFThe present work investigated sites of ethanol action in ATP-gated P2X receptors (P2XRs) using chimeric strategies that exploited the differences in ethanol response between P2X2R (inhibition) and P2X3R (potentiation). We tested ethanol (10-200mM) effects on ATP- and alpha,beta-methylene-ATP (alpha,beta-meATP)-induced currents in wildtype P2X2, P2X3 and chimeric P2X2/P2X3Rs expressed in Xenopus oocytes using two-electrode voltage-clamp (-70mV). Exchanging ectodomain regions of P2X2 and P2X3Rs reversed wildtype ethanol responses.
View Article and Find Full Text PDF